Journal of Low Temperature Physics

, Volume 172, Issue 3–4, pp 202–211 | Cite as

Electrical Noise and Transport Properties of Graphene

  • Nan Sun
  • Kristof Tahy
  • Huili Xing
  • Debdeep Jena
  • Gerald Arnold
  • Steven T. Ruggiero
Article

Abstract

We present a study of the noise properties of single-layer exfoliated graphene as a function of gate bias. A tunnel/trap model is presented based on the interaction of graphene electrons with the underlying substrate. The model incorporates trap position, energy, and barrier height for tunneling into a given trap—along with the band-structure of the graphene—and is in good accord with the general characteristics of the data.

Keywords

Graphene 1/f noise Transport Tunneling 

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi, Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    P. Avouris, Graphene: electronic and photonic properties and devices. Nano Lett. 10, 4285–4294 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    Y.-M. Lin, J. Appenzeller, J. Knoch, Z. Chen, P. Avouris, Low-frequency current fluctuations in individual semiconducting single-wall carbon nanotubes. Nano Lett. 6, 930–936 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    Y.-M. Lin, P. Avouris, Strong suppression of electrical noise in bilayer graphene nanodevices. Nano Lett. 8, 2119–2125 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    G. Xu, J. Bai, C.M. Torres, Jr., E.B. Song, J. Tang, Y. Zhou, X. Duan, Y. Zhang, K.L. Wang, Low-noise submicron channel graphene nanoribbons. Appl. Phys. Lett. 97, 073107 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    A.N. Pal, A.A. Bol, A. Ghosh, Large low-frequency resistance noise in chemical vapor deposited graphene. Appl. Phys. Lett. 97, 133504 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    M.G. Sung, H. Lee, K. Heo, K.-E. Byun, T. Kim, D.H. Seo, S. Seo, S. Hong, Scanning noise microscopy on graphene devices. ACS Nano 5, 8620–8628 (2011) CrossRefGoogle Scholar
  9. 9.
    Z. Cheng, Q. Li, Z. Li, Q. Zhou, Y. Fang, Suspended graphene sensors with improved signal and reduced noise. Nano Lett. 10, 1864–1868 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    X. Du, I. Skachko, A. Barker, E.Y. Andrei, Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    J.S. Moon, D. Curtis, D. Zehnder, S. Kim, D.K. Gaskill, G.G. Jernigan, R.L. Myers-Ward, C.R. Eddy Jr., P.M. Campbell, K.-M. Lee, P. Asbeck, Low-phase-noise graphene FETs in ambipolar RF applications. IEEE Electron Device Lett. 32, 270–272 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    S. Rumyantsev, G. Liu, M.S. Shur, R.A. Potyrailo, A.A. Balandin, Selective gas sensing with a single pristine graphene transistor. Nano Lett. 12, 2294–2298 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    M. Dankerl, M.V. Hauf, A. Lippert, L.H. Hess, S. Birner, I.D. Sharp, A. Mahmood, P. Mallet, J.-Y. Veuillen, M. Stutzmann, J.A. Garrido, Graphene solution-gated field-effect transistor array for sensing applications. Adv. Funct. Mater. 20, 3117–3124 (2010) CrossRefGoogle Scholar
  14. 14.
    Q. Shao, G. Liu, D. Teweldebrhan, A.A. Balandin, S. Rumyantsev, M. Shur, D. Yan, Flicker noise in bilayer graphene transistors. IEEE Electron Device Lett. 30, 288–290 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    G. Liu, W. Stillman, S. Rumyantsev, Q. Shao, M. Shur, A.A. Balandin, Low-frequency electronic noise in the double-gate single-layer graphene transistors. Appl. Phys. Lett. 95, 033103 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    K. Kim, H.J. Park, B.-C. Woo, K.J. Kim, G.T. Kim, W.S. Yun, Electric property evolution of structurally defected multilayer graphene. Nano Lett. 8, 3092–3096 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    S. Rumyantsev, G. Liu, W. Stillman, M. Shur, A.A. Balandin, Electrical and noise characteristics of graphene field-effect transistors: ambient effects, noise sources and physical mechanisms. J. Phys. Condens. Matter 22, 395302 (2010) CrossRefGoogle Scholar
  18. 18.
    A.N. Pal, A. Ghosh, Resistance noise in electrically biased bilayer graphene. Phys. Rev. Lett. 102, 126805 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    A.N. Pal, A. Ghosh, Resistance noise in graphene based field effect devices. AIP Conf. Proc. 1129, 479–482 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    A.N. Pal, A. Ghosh, Ultralow noise field-effect transistor from multilayer graphene. Appl. Phys. Lett. 95, 082105 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    F.N. Hooge, 1/f noise sources. IEEE Trans. Electron Devices 41, 1926–1935 (1994) ADSCrossRefGoogle Scholar
  22. 22.
    F.N. Hooge, T.G.M. Kleinpenning, L.K.J. Vandamme, Experimental studies on 1/f noise. Rep. Prog. Phys. 44, 479–532 (1981) ADSCrossRefGoogle Scholar
  23. 23.
    A.N. Pal, S. Ghatak, V. Kochat, E.S. Sneha, A. Sampathkumar, S. Raghavan, A. Ghosh, Microscopic mechanism of 1/f noise in graphene: role of energy band dispersion. ACS Nano 5, 2075–2081 (2011) CrossRefGoogle Scholar
  24. 24.
    J. Tersoff, Low-frequency noise in nanoscale ballistic transistors. Nano Lett. 7, 194–198 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    I. Heller, S. Chatoor, J. Mannik, M.A.G. Zevenbergen, J.B. Oostinga, A.F. Morpurgo, C. Dekker, S.G. Lemay, Charge noise in graphene transistors. Nano Lett. 10, 1563–1567 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    A.A. Kaverzin, A.S. Mayorov, A. Shytov, D.W. Horsell, Impurities as a source of 1/f noise in graphene. Phys. Rev. B 85, 075435 (2012) ADSCrossRefGoogle Scholar
  27. 27.
    Y. Zhang, E.E. Mendez, X. Du, Mobility-dependent low-frequency noise in graphene field-effect transistors. ACS Nano 5, 8124–8130 (2011) CrossRefGoogle Scholar
  28. 28.
    G. Xu, C.M. Torres, Jr., Y. Zhang, F. Liu, E.B. Song, M. Wang, Y. Zhou, C. Zeng, K.L. Wang, Effect of spatial charge inhomogeneity on 1/f noise behavior in graphene. Nano Lett. 10, 3312–3317 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    A. Golub, B. Horovitz, Shot noise in graphene with long-range Coulomb interaction and local Fermi distribution. Phys. Rev. B 81, 245424 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    G. Xu, C.M. Torres, Jr., E.B. Song, J. Tang, J. Bai, X. Duan, Y. Zhang, K.L. Wang, Enhanced conductance fluctuation by quantum confinement effect in graphene nanoribbons. Nano Lett. 10, 4590–4594 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    R. Jayaraman, C.G. Sodini, A 1/f noise technique to extract the oxide trap density near the conduction band edge of silicon. IEEE Trans. Electron Devices 36, 1773–1782 (1989) ADSCrossRefGoogle Scholar
  32. 32.
    S. Adam, E.H. Hwang, V.M. Galitski, S. Das Sarma, A self-consistent theory for graphene transport. Proc. Natl. Acad. Sci. USA 104, 18392–18397 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    T. Ando, A.B. Fowler, F. Stern, Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982) ADSCrossRefGoogle Scholar
  34. 34.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    J.-H. Chen, W.G. Cullen, C. Jang, M.S. Fuhrer, E.D. Williams, Defect scattering in graphene. Phys. Rev. Lett. 102, 236805 (2009) ADSCrossRefGoogle Scholar
  36. 36.
    C. Jang, S. Adam, J.-H. Chen, E.D. Williams, S. Das Sarma, M.S. Fuhrer, Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short- and long-range potential scattering. Phys. Rev. Lett. 101, 146805 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nan Sun
    • 1
  • Kristof Tahy
    • 2
  • Huili Xing
    • 2
  • Debdeep Jena
    • 2
  • Gerald Arnold
    • 1
  • Steven T. Ruggiero
    • 1
  1. 1.Department of PhysicsUniversity of Notre DameNotre DameUSA
  2. 2.Department of Electrical EngineeringUniversity of Notre DameNotre DameUSA

Personalised recommendations