Journal of Low Temperature Physics

, Volume 171, Issue 5–6, pp 511–518 | Cite as

Decay of Counterflow Quantum Turbulence in Superfluid 4He

Article

Abstract

We have simulated the decay of thermal counterflow quantum turbulence from a statistically steady state at T=1.9 K, with the assumption that the normal fluid is at rest during the decay. The results are consistent with the predictions of the Vinen equation (in essence the vortex line density decays as t−1). For the statistically steady state, we determine the parameter c2, which connects the curvature of the vortex lines and the mean separation of vortices. A formula connecting the parameter χ2 of the Vinen equation with c2 is shown to agree with the results of the simulations. Disagreement with experiment is discussed briefly.

Keywords

4He Quantized vortices Thermal counterflow Decay turbulence 

References

  1. 1.
    W.P. Halperin, M. Tsubota (eds.), Progress in Low Temperature Physics, vol. XVI (Elsevier, Amsterdam, 2008) Google Scholar
  2. 2.
    M. Tsubota, J. Phys. Soc. Jpn. 77, 111006 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    W.F. Vinen, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 240, 114, 128 (1957) ADSCrossRefGoogle Scholar
  4. 4.
    W.F. Vinen, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 242, 493 (1957) ADSCrossRefGoogle Scholar
  5. 5.
    W.F. Vinen, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 243, 400 (1958) ADSCrossRefGoogle Scholar
  6. 6.
    K.W. Schwarz, Phys. Rev. B 31, 5782 (1985) ADSCrossRefGoogle Scholar
  7. 7.
    K.W. Schwarz, Phys. Rev. B 38, 2398 (1988) ADSCrossRefGoogle Scholar
  8. 8.
    H. Adachi, S. Fujiyama, M. Tsubota, Phys. Rev. B 81, 104511 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    D.J. Melotte, C.F. Barenghi, Phys. Rev. Lett. 80, 4181 (1998) ADSCrossRefGoogle Scholar
  10. 10.
    W. Guo, S.B. Cahn, J.A. Nikkel, W.F. Vinen, D.N. McKinsey, Phys. Rev. Lett. 105, 045301 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    L. Skrbek, A.V. Gordeev, F. Soukup, Phys. Rev. E 67, 047302 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    S.R. Stalp, L. Skrbek, R.J. Donnely, Phys. Rev. Lett. 82, 4831 (1999) ADSCrossRefGoogle Scholar
  13. 13.
    K.W. Schwarz, J.R. Rozen, Phys. Rev. Lett. 66, 1898 (1991) ADSCrossRefGoogle Scholar
  14. 14.
    K.W. Schwarz, J.R. Rozen, Phys. Rev. B 44, 7563 (1991) ADSCrossRefGoogle Scholar
  15. 15.
    D.F. Brewer (ed.), Progress in Low Temperature Physics, vol. VIII (North Holland, Amsterdam, 1982), p. 133 Google Scholar
  16. 16.
    W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128, 516 (2002) CrossRefGoogle Scholar
  17. 17.
    C.F. Barenghi, A.V. Gordeev, L. Skrbek, Phys. Rev. E 74, 026309 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    M. Sciacca, Y.U. Sergeev, C.F. Barenghi, L. Skrbek, Phys. Rev. B 82, 134531 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of PhysicsOsaka City UniversityOsakaJapan
  2. 2.The OCU Advanced Research Institute for Natural Science and Technology (OCARINA)Osaka City UniversityOsakaJapan
  3. 3.School of Physics and AstronomyUniversity of BirminghamBirminghamUK

Personalised recommendations