Advertisement

Journal of Low Temperature Physics

, Volume 169, Issue 5–6, pp 400–422 | Cite as

The Effective Two-Particle Interaction of Cold Atoms as Derived from Bragg Scattering

  • R. Sarjonen
  • M. Saarela
  • F. Mazzanti
Article

Abstract

We study the dynamic structure function of ultracold alkali-metal gases for large scattering lengths and momenta where corrections to the mean field approximation become important. We compare our result with the Bragg-scattering measurements in 85Rb by Papp et al. (Phys. Rev. Lett. 101:135301, 2008) and show that these experiments set very strict limits to the shape of the effective two-particle interaction ruling out the contact and hard spheres potentials. Using the Feshbach resonance approximation we derive the effective interaction, which turns out to be very similar to the soft spheres potential in momentum space. At large scattering lengths the interaction becomes universal and could be directly measured by Bragg scattering. We also discuss the experimental conditions needed for the appearance of the maxon-roton structure in the excitation spectrum and finally show that when the scattering length becomes larger than 2000 Bohr radii the uniform gas phase undergoes a phase transition into the density wave state.

Keywords

Ultracold Bose gases Feshbach resonance Bragg scattering Dynamic structure 

Notes

Acknowledgements

We thank V. Apaja, G. Astrakharchik, J. Boronat and A. Polls for discussions. This work has been supported by Grant No. FIS2008-0443 from DGI (Spain), and Grant No. 2009-SGR1003 from the Generalitat de Catalunya. One of us (R.S.) thanks the Finnish Cultural Foundation and Vilho, Yrjö and Kalle Väisälä fund for financial support.

References

  1. 1.
    T.D. Lee, C.N. Yang, Phys. Rev. 105, 1119 (1957) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    T.D. Lee, K. Huang, C.N. Yang, Phys. Rev. 106, 1135 (1957) MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    D.M. Stamper-Kurn, A.P. Chikkatur, A. Görlitz, S. Inouye, S. Gupta, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 83, 2876 (1999) ADSCrossRefGoogle Scholar
  4. 4.
    J. Steinhauer, R. Ozeri, N. Katz, N. Davidson, Phys. Rev. Lett. 88, 120407 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    R. Ozeri, N. Katz, J. Steinhauer, N. Davidson, Rev. Mod. Phys. 77, 187 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    P.T. Ernst, S. Götze, J.S. Krause, K. Pyka, D.S. Lühmann, D. Pfankuche, K. Sengstock, Nat. Phys. (2008). Published online. doi: 10.1038/nphys1505 Google Scholar
  7. 7.
    E.A. Kolganova, A.K. Motovilov, W. Sandhas, Phys. Rev. A 70, 052711 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    P. Grüter, D. Ceperley, F. Laloë, Phys. Rev. Lett. 79, 3549 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    J.D. Reppy, B.C. Crooker, B. Hebral, A.D. Corwin, J. He, G.M. Zassenhaus, Phys. Rev. Lett. 84, 2060 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    S.C. Cormack, D. Schumayer, D.A.W. Hutchinson, Phys. Rev. Lett. 107, 140401 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    L.P. Pitaevskii, JETP Lett. 39, 511 (1984) ADSGoogle Scholar
  12. 12.
    D.H.J. O’Dell, S. Giovanazzi, G. Kurizki, Phys. Rev. Lett. 90, 110402 (2003) CrossRefGoogle Scholar
  13. 13.
    D. Hufnagl, R. Kaltseis, V. Apaja, R.E. Zillich, Phys. Rev. Lett. 107, 065303 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller, G. Pupillo, Phys. Rev. Lett. 105, 135301 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    S. Saccani, S. Moroni, M. Boninsegni, Phys. Rev. Lett. 108, 175301 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    M. Boninsegni, J. Low Temp. Phys. 1–13 (2012) Google Scholar
  17. 17.
    R. Sarjonen, M. Saarela, F. Mazzanti, Eur. Phys. J. D 65, 25 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    S.B. Papp, J.M. Pino, R.J. Wild, S. Ronen, C.E. Wieman, D.S. Jin, E.A. Cornell, Phys. Rev. Lett. 101, 135301 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    S.C. Cormack, D. Schumayer, D.A.W. Hutchinson, Phys. Rev. Lett. 107, 140401 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    S.T. Beliaev, J. Exp. Theor. Phys. 7, 289 (1958) MathSciNetGoogle Scholar
  21. 21.
    S. Ronen, J. Phys. B, At. Mol. Opt. Phys. 42, 055301 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    R. Sarjonen, M. Saarela, F. Mazzanti, Phys. Rev. A 84, 041602 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    E. Feenberg, Theory of Quantum Fluids (Academic, New York, 1969) Google Scholar
  24. 24.
    M. Mark, F. Ferlaino, S. Knoop, J.G. Danzl, T. Kraemer, C. Chin, H.C. Nägerl, R. Grimm, Phys. Rev. A 76, 042514 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    M. Jona-Lasinio, L. Pricoupenko, Phys. Rev. Lett. 104, 023201 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    A.J. Leggett, Rev. Mod. Phys. 73, 307 (2001) ADSCrossRefGoogle Scholar
  27. 27.
    C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002) Google Scholar
  28. 28.
    T. Köhler, K. Góral, P.S. Julienne, Rev. Mod. Phys. 78, 1311 (2006) ADSCrossRefGoogle Scholar
  29. 29.
    H. Feshbach, Ann. Phys. 19, 287 (1962) MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 30.
    C.C. Chang, C.E. Campbell, Phys. Rev. B 13, 3779 (1976) ADSCrossRefGoogle Scholar
  31. 31.
    E. Krotscheck, M. Saarela, Phys. Rep. 232, 1 (1993) ADSCrossRefGoogle Scholar
  32. 32.
    S.J.J.M.F. Kokkelmans, J.N. Milstein, M.L. Chiofalo, R. Walser, M.J. Holland, Phys. Rev. A 65, 053617 (2002) ADSCrossRefGoogle Scholar
  33. 33.
    Z.S. Agranovich, V.A. Marchenko, The Inverse Problem of Scattering Theory (Gordon, New York, 1964) Google Scholar
  34. 34.
    T. Kirst, K. Amos, L. Berge, M. Coz, H.V. von Geramb, Phys. Rev. C 40, 912 (1989) ADSCrossRefGoogle Scholar
  35. 35.
    V. Apaja, J. Halinen, V. Halonen, E. Krotscheck, M. Saarela, Phys. Rev. B 55, 12925 (1997) ADSCrossRefGoogle Scholar
  36. 36.
    F. Mazzanti, A. Polls, A. Fabrocini, Phys. Rev. A 67, 063615 (2003) ADSCrossRefGoogle Scholar
  37. 37.
    S. Giorgini, J. Boronat, J. Casulleras, Phys. Rev. A 60, 5129 (1999) ADSCrossRefGoogle Scholar
  38. 38.
    E. Krotscheck, Phys. Rev. B 33, 3158 (1986) ADSCrossRefGoogle Scholar
  39. 39.
    A.J. Leggett, Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems (Oxford University Press, London, 2007) Google Scholar
  40. 40.
    G.M. Bruun, A.D. Jackson, E.E. Kolomeitsev, Phys. Rev. A 71, 052713 (2005) ADSCrossRefGoogle Scholar
  41. 41.
    G.E. Brown, A.D. Jackson, The Nucleon-Nucleon Interaction (North-Holland, Amsterdam, 1976) Google Scholar
  42. 42.
    L. Pricoupenko, M. Jona-Lasinio, Phys. Rev. A 84, 062712 (2011) ADSCrossRefGoogle Scholar
  43. 43.
    T. Köhler, T. Gasenzer, P. Julienne, K. Burnett, Phys. Rev. Lett. 91, 230401 (2003) CrossRefGoogle Scholar
  44. 44.
    C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010) ADSCrossRefGoogle Scholar
  45. 45.
    N. Levinson, Kgl. Danske Videnskab Selskab Mat.-fys. Medd. 25 (1949) Google Scholar
  46. 46.
    R. Jost, W. Kohn, Phys. Rev. 87, 977 (1952) MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of OuluOuluFinland
  2. 2.Dep. de Fisica i Enginyeria NuclearUniversitat Politecnica de CatalunyaBarcelonaSpain

Personalised recommendations