Journal of Low Temperature Physics

, Volume 171, Issue 5–6, pp 731–736 | Cite as

Stressed Silicon Nitride Nanomechanical Resonators at Helium Temperatures

  • M. Defoort
  • K. J. Lulla
  • C. Blanc
  • H. Ftouni
  • O. Bourgeois
  • E. Collin
Article

Abstract

We have characterized the mechanical resonance properties (both linear and nonlinear) of various doubly-clamped silicon nitride nanomechanical resonators, each with a different intrinsic tensile stress. The measurements were carried out at 4 K and the magnetomotive technique was used to drive and detect the motion of the beams. The resonant frequencies of the beams are in the megahertz range, with quality factors of the order of 104. We also measure the dynamic range of the beams and their nonlinear (Duffing) behaviour.

Keywords

Nanomechanical resonators Nonlinear Magnetomotive 

Notes

Acknowledgements

We would like to thank G. Julie, E. Andre and T. Fournier for help with the fabrication of the devices. We acknowledge the support from MICROKELVIN, the EU FRP7 low temperature infrastructure grant 228464, and of the 2010 ANR French grant QNM n 040401.

References

  1. 1.
    S.S. Verbridge, D.F. Shapiro, H.G. Craighead, J.M. Parpia, Nano Lett. 7, 1728 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    S.S. Verbridge, J.M. Parpia, R.B. Reinchenbach, L.M. Bellan, H.G. Craighead, J. Appl. Phys. 99, 124304 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    S.S. Verbridge, H.G. Craighead, J.M. Parpia, Appl. Phys. Lett. 92, 013112 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    D.R. Southworth, R.A. Barton, S.S. Verbridge, B. Ilic, A.D. Fefferman, H.G. Craighead, J.M. Parpia, Phys. Rev. Lett. 102, 225503 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    Q.P. Unterreithmeier, T. Faust, J.P. Kotthaus, Phys. Rev. Lett. 105, 027205 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    S. Schmid, K.D. Jensen, K.H. Nielsen, A. Boisen, Phys. Rev. B 84, 165307 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    A. Suhel, B.D. Hauer, T.S. Biswas, K.S.D. Beach, J.P. Davis, Appl. Phys. Lett. 100, 173111 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    Q.P. Unterreithmeier, E.M. Weig, J.P. Kotthaus, Nature 458, 1001 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    K.Y. Fong, W.H.P. Pernice, H.X. Tang, Phys. Rev. B 85, 161410 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    T. Rocheleau, T. Nkudum, C. Macklin, J.B. Hertzberg, A.A. Clerk, K.C. Schwab, Nature 463, 72 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    R.A. Barton, B. Ilic, S.S. Verbridge, B.R. Cipriany, J.M. Parpia, H.G. Craighead, Nano Lett. 10, 2058 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    T. Larsen, S. Schmid, L. Grönberg, A.O. Niskanen, J. Hassel, S. Dohn, A. Boisen, Appl. Phys. Lett. 98, 121901 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    E. Collin, T. Moutonet, J.-S. Heron, O. Bourgeois, Yu.M. Bunkov, H. Godfrin, J. Low Temp. Phys. 162, 653 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    I. Kozinsky, H.W.Ch. Postma, I. Bargatin, M.L. Roukes, Appl. Phys. Lett. 88, 253101 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    E. Collin, M. Defoort, K. Lulla, T. Moutonet, J.-S. Heron, O. Bourgeois, Yu.M. Bunkov, H. Godfrin, Rev. Sci. Instrum. 83, 045005 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    A.N. Cleland, M.L. Roukes, Sensors and Actuators 72, 256 (1999) CrossRefGoogle Scholar
  17. 17.
    E. Collin, T. Moutonet, J.-S. Heron, O. Bourgeois, Yu.M. Bunkov, H. Godfrin, Phys. Rev. B 84, 054108 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    E. Collin, Yu.M. Bunkov, H. Godfrin, Phys. Rev. B 82, 235416 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations. Wiley Classics Library (Wiley, New York, 1995) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • M. Defoort
    • 1
  • K. J. Lulla
    • 1
  • C. Blanc
    • 1
  • H. Ftouni
    • 1
  • O. Bourgeois
    • 1
  • E. Collin
    • 1
  1. 1.Institut NéelCNRS et Université Joseph FourierGrenoble Cedex 9France

Personalised recommendations