Journal of Low Temperature Physics

, Volume 169, Issue 3–4, pp 180–196 | Cite as

Generalized Rotational Susceptibility Studies of Solid 4He

  • V. Gadagkar
  • E. J. Pratt
  • B. Hunt
  • M. Yamashita
  • M. J. Graf
  • A. V. Balatsky
  • J. C. Davis
Article
  • 189 Downloads

Abstract

Using a novel SQUID-based torsional oscillator (TO) technique to achieve increased sensitivity and dynamic range, we studied TO’s containing solid 4He. Below ∼250 mK, the TO resonance frequency f increases and its dissipation D passes through a maximum as first reported by Kim and Chan. To achieve unbiased analysis of such 4He rotational dynamics, we implemented a new approach based upon the generalized rotational susceptibility \(\chi_{{}^{4}\mathrm{He}}^{ - 1}(\omega,T)\). Upon cooling, we found that equilibration times within f(T) and D(T) exhibit a complex synchronized ultraslow evolution toward equilibrium indicative of glassy freezing of crystal disorder conformations which strongly influence the rotational dynamics. We explored a more specific \(\chi_{{}^{4}\mathrm{He}}^{ -1}(\omega,\tau(T))\) with τ(T) representing a relaxation rate for inertially active microscopic excitations. In such models, the characteristic temperature T at which df/dT and D pass simultaneously through a maximum occurs when the TO angular frequency ω and the relaxation rate are matched: ωτ(T)=1. Then, by introducing the free inertial decay (FID) technique to solid 4He TO studies, we carried out a comprehensive map of f(T,V) and D(T,V) where V is the maximum TO rim velocity. These data indicated that the same microscopic excitations controlling the TO motions are generated independently by thermal and mechanical stimulation of the crystal. Moreover, a measure for their relaxation times τ(T,V) diverges smoothly everywhere without exhibiting a critical temperature or velocity, as expected in ωτ=1 models. Finally, following the observations of Day and Beamish, we showed that the combined temperature-velocity dependence of the TO response is indistinguishable from the combined temperature-strain dependence of the 4He shear modulus. Together, these observations imply that ultra-slow equilibration of crystal disorder conformations controls the rotational dynamics and, for any given disorder conformation, the anomalous rotational responses of solid 4He are associated with generation of the same microscopic excitations as those produced by direct shear strain.

Keywords

Supersolid helium Generalized rotational susceptibility Superglass Torsional oscillator 

References

  1. 1.
    D. Thouless, Ann. Phys. 52, 403 (1969) ADSCrossRefGoogle Scholar
  2. 2.
    A.F. Andreev, I.M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969) ADSGoogle Scholar
  3. 3.
    L. Reatto, Phys. Rev. 183, 334 (1969) ADSCrossRefGoogle Scholar
  4. 4.
    G.V. Chester, Phys. Rev. A 2, 256 (1970) ADSCrossRefGoogle Scholar
  5. 5.
    A.J. Leggett, Phys. Rev. Lett. 25, 1543 (1970) ADSCrossRefGoogle Scholar
  6. 6.
    M.W. Meisel, Physica B 178, 121 (1992) ADSCrossRefGoogle Scholar
  7. 7.
    S. Balibar, Nature 464, 176–182 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    E. Kim, M.H.W. Chan, Nature 427, 225–227 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    E. Kim, M.H.W. Chan, Science 305, 1941–1944 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    A.S.C. Rittner, J.D. Reppy, Phys. Rev. Lett. 97, 165301 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    Y. Aoki, J.C. Graves, H. Kojima, Phys. Rev. Lett. 99, 015301 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    A. Penzev, Y. Yasuta, M. Kubota, J. Low Temp. Phys. 148, 677–681 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    M. Kondo, S. Takada, Y. Shibayama, K. Shirahama, J. Low Temp. Phys. 148 695–699 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    B. Hunt et al., Science 324, 632–636 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    E.J. Pratt et al., Science 332, 821–824 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    H. Choi, S. Kwon, D.Y. Kim, E. Kim, Nat. Phys. 6, 424–427 (2010) CrossRefGoogle Scholar
  17. 17.
    A.S.C. Rittner, J.D. Reppy, Phys. Rev. Lett. 101, 155301 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    D.R. Tilley, J. Tilley, Superfluidity and Superconductivity, 3rd edn. (IOP, Bristol, 1990) Google Scholar
  19. 19.
    X. Lin, A.C. Clark, M.H.W. Chan, Nature 449, 1025–1028 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    X. Lin, A.C. Clark, Z.G. Cheng, M.H.W. Chan, Phys. Rev. Lett. 102, 125302 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    J.-J. Su, M.J. Graf, A.V. Balatsky, J. Low Temp. Phys. 159, 431–440 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    J. Day, J. Beamish, Phys. Rev. Lett. 96, 105304 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    S. Sasaki, R. Ishiguro, F. Caupin, H.J. Maris, S. Balibar, Science 313, 1098–1100 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    M.W. Ray, R.B. Hallock, Phys. Rev. Lett. 100, 235301 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    M.W. Ray, R.B. Hallock, Phys. Rev. B 79, 224302 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    M.W. Ray, R.B. Hallock, Phys. Rev. B 82, 012502 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    M.W. Ray, R.B. Hallock, Phys. Rev. B 84, 144512 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    A.S.C. Rittner, J.D. Reppy, Phys. Rev. Lett. 98, 175302 (2007) ADSCrossRefGoogle Scholar
  29. 29.
    A.C. Clark, J.T. West, M.H.W. Chan, Phys. Rev. Lett. 99, 135302 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    A.C. Clark, J.D. Maynard, M.H.W. Chan, Phys. Rev. B 77, 184513 (2008) ADSCrossRefGoogle Scholar
  31. 31.
    S. Sasaki, F. Caupin, S. Balibar, Phys. Rev. Lett. 99, 205302 (2007) ADSCrossRefGoogle Scholar
  32. 32.
    J. Day, J. Beamish, Nature 450, 853–856 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    O. Syshchenko, J. Day, J. Beamish, Phys. Rev. Lett. 104, 195301 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    J. Day, O. Syshchenko, J. Beamish, Phys. Rev. Lett. 104, 075302 (2010) ADSCrossRefGoogle Scholar
  35. 35.
    P.W. Anderson, Nat. Phys. 3, 160–162 (2007) CrossRefGoogle Scholar
  36. 36.
    A. Penzev, Y. Yasuta, M. Kubota, Phys. Rev. Lett. 101, 065301 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    S.I. Shevchenko, Sov. J. Low Temp. Phys. 13, 61–69 (1987) Google Scholar
  38. 38.
    M. Boninsegni et al., Phys. Rev. Lett. 99, 035301 (2007) ADSCrossRefGoogle Scholar
  39. 39.
    J. Wu, P. Phillips, Phys. Rev. B 78, 014515 (2008) ADSCrossRefGoogle Scholar
  40. 40.
    J. Bossy, J.V. Pearce, H. Schober, H.R. Glyde, Phys. Rev. B 78, 224507 (2008) ADSCrossRefGoogle Scholar
  41. 41.
    G. Biroli, C. Chamon, F. Zamponi, Phys. Rev. B 78, 224306 (2008) ADSCrossRefGoogle Scholar
  42. 42.
    B. Svistunov, Physica B 404, 521–523 (2009) ADSCrossRefGoogle Scholar
  43. 43.
    K.-M. Tam, S. Geraedts, S. Inglis, M.J.P. Gingras, R.G. Melko, Phys. Rev. Lett. 104, 215301 (2010) ADSCrossRefGoogle Scholar
  44. 44.
    X. Rojas, A. Haziot, V. Bapst, S. Balibar, H.J. Maris, Phys. Rev. Lett. 105, 145302 (2010) ADSCrossRefGoogle Scholar
  45. 45.
    A.V. Balatsky, M.J. Graf, Z. Nussinov, S.A. Trugman, Phys. Rev. B 75, 094201 (2007) ADSCrossRefGoogle Scholar
  46. 46.
    Z. Nussinov, A.V. Balatsky, M.J. Graf, S.A. Trugman, Phys. Rev. B 76, 014530 (2007) ADSCrossRefGoogle Scholar
  47. 47.
    M.J. Graf, Z. Nussinov, A.V. Balatsky, J. Low Temp. Phys. 158, 550–559 (2010) ADSCrossRefGoogle Scholar
  48. 48.
    A.F. Andreev, JETP Lett. 85, 585–587 (2007) CrossRefGoogle Scholar
  49. 49.
    I. Iwasa, Phys. Rev. B 81, 104527 (2010) ADSCrossRefGoogle Scholar
  50. 50.
    J.-J. Su, M.J. Graf, A.V. Balatsky, Phys. Rev. Lett. 105, 045302 (2010) ADSCrossRefGoogle Scholar
  51. 51.
    J.-J. Su, M.J. Graf, A.V. Balatsky, J. Low Temp. Phys. 162, 433–440 (2011) ADSCrossRefGoogle Scholar
  52. 52.
    J.-J. Su, M.J. Graf, A.V. Balatsky, New J. Phys. 13, 113024 (2011) ADSCrossRefGoogle Scholar
  53. 53.
    S.E. Korshunov, JETP Lett. 90, 156–159 (2009) ADSCrossRefGoogle Scholar
  54. 54.
    K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941) ADSCrossRefGoogle Scholar
  55. 55.
    D.W. Davidson, R.H. Cole, J. Chem. Phys. 19, 1484 (1951) ADSCrossRefGoogle Scholar
  56. 56.
    S.V. Pereverzev, A. Loshak, S. Backhaus, J.C. Davis, R.E. Packard, Nature 388, 449–451 (1997) ADSCrossRefGoogle Scholar
  57. 57.
    E. Hoskinson, Y. Sato, I. Hahn, R.E. Packard, Nat. Phys. 2, 23–26 (2006) CrossRefGoogle Scholar
  58. 58.
    J. Clarke, A. Braginski (eds.), The SQUID Handbook, vol. 1 (Wiley-VCH, Weinheim, 2004) Google Scholar
  59. 59.
    H.J. Paik, J. Appl. Phys. 47, 1168–1178 (1976) ADSCrossRefGoogle Scholar
  60. 60.
    Quantum Design, model 550 Google Scholar
  61. 61.
    Y. Aoki, M.C. Keiderling, H. Kojima, Phys. Rev. Lett. 100, 215303 (2008) ADSCrossRefGoogle Scholar
  62. 62.
    V.N. Grigor’ev et al., Phys. Rev. B 76, 224524 (2007) ADSCrossRefGoogle Scholar
  63. 63.
    A.A. Lisunov et al., Phys. Rev. B 83, 132201 (2011) ADSCrossRefGoogle Scholar
  64. 64.
    D.J. Bishop, J.D. Reppy, Phys. Rev. Lett. 40, 1727–1730 (1978) ADSCrossRefGoogle Scholar
  65. 65.
    V. Ambegaokar, B.I. Halperin, D.R. Nelson, E.D. Siggia, Phys. Rev. B 21, 1806–1826 (1980) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • V. Gadagkar
    • 1
  • E. J. Pratt
    • 1
    • 2
  • B. Hunt
    • 1
    • 3
  • M. Yamashita
    • 4
  • M. J. Graf
    • 5
  • A. V. Balatsky
    • 5
  • J. C. Davis
    • 1
    • 6
    • 7
    • 8
  1. 1.Laboratory for Atomic and Solid State Physics, Department of PhysicsCornell UniversityIthacaUSA
  2. 2.National Institute of Standards and TechnologyBoulderUSA
  3. 3.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of PhysicsKyoto UniversityKyotoJapan
  5. 5.Theoretical Division and Center for Integrated NanotechnologiesLos Alamos National Lab.Los AlamosUSA
  6. 6.Condensed Matter Physics and Materials Science DepartmentBrookhaven National LaboratoryUptonUSA
  7. 7.Kavli Institute for Theoretical PhysicsUC Santa BarbaraSanta BarbaraUSA
  8. 8.School of Physics and AstronomyUniversity of St. AndrewsSt. AndrewsUK

Personalised recommendations