Advertisement

Journal of Low Temperature Physics

, Volume 168, Issue 5–6, pp 285–296 | Cite as

On the Magnetoresistance Maximum Observed in the Intermediate Magnetic Field Region for the Two-Dimensional Hole Gas in a Strained Si0.05Ge0.95 Quantum Well

  • I. B. Berkutov
  • V. V. Andrievskii
  • Y. F. Komnik
  • T. Hackbarth
  • D. R. Leadley
  • O. A. Mironov
Article

Abstract

The magnetoresistance (MR) of a two-dimensional hole gas in a quantum well of compressively strained Si0.05Ge0.95 has been investigated as a function of temperature. The MR shows a maximum at intermediate magnetic fields between the regions of weak localization and the Shubnikov-de Haas oscillations, which is discussed in terms of a recent theoretical study of the electron-electron interaction effect by Sedrakyan and Raikh (SR). The magnetic field MR dependence is clearly observed to cross over from quadratic to linear at T=7.8 K and B≈0.3 T. It is shown that the SR theory provides a good description of both the measured quadratic and positive linear MR, but over estimates the field position of the MR maximum and does not account for the shift in position with temperature that is observed. Earlier theories of electron-electron interaction (by Altshuler and Aronov, Gornyi and Mirlin) show a better agreement with the experimentally observed behavior of the MR maximum, but fit the low field MR less accurately.

Keywords

Heterostructure Electron-electron interaction Friedel oscillations 

Notes

Acknowledgements

The authors thank Professor M.E. Raikh for helpful discussions. Measurements were made in International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw, Poland and University of Warwick, Coventry, UK.

References

  1. 1.
    E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979) ADSCrossRefGoogle Scholar
  2. 2.
    B.L. Altshuler, D.E. Khmelnitzkii, A.I. Larkin, P.A. Lee, Phys. Rev. B 22, 5142 (1980) ADSCrossRefGoogle Scholar
  3. 3.
    A. Kawabata, J. Phys. Soc. Jpn. 53, 3540 (1984) ADSCrossRefGoogle Scholar
  4. 4.
    A. Cassamchenai, B. Shapiro, J. Phys. 4, 1527 (1994) Google Scholar
  5. 5.
    B.L. Altshuler, A.G. Aronov, P.A. Lee, Phys. Rev. Lett. 44, 1288 (1980) ADSCrossRefGoogle Scholar
  6. 6.
    B.L. Altshuler, A.G. Aronov, A.I. Larkin, D.E. Khmelnitsky, Sov. Phys. JETP 81, 768 (1981) Google Scholar
  7. 7.
    B.L. Altshuler, A.G. Aronov, in Electron–Electron Interactions Disordered Systems Modern Problems in Condensed Matter Science, ed. by A.L. Efros, M. Pollak (North-Holland, Amsterdam, 1985) Google Scholar
  8. 8.
    G. Zala, B.N. Narozny, I.L. Aleiner, Phys. Rev. B 64, 214204 (2001) ADSCrossRefGoogle Scholar
  9. 9.
    G. Zala, B.N. Narozny, I.L. Aleiner, Phys. Rev. B 64, 201201 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    G. Zala, B.N. Narozny, I.L. Aleiner, Phys. Rev. B 65, 020201 (2002) ADSCrossRefGoogle Scholar
  11. 11.
    I.V. Gornyi, A.D. Mirlin, Phys. Rev. Lett. 90, 076801 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    I.V. Gornyi, A.D. Mirlin, Phys. Rev. B 69, 045313 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    A. Houghton, J.R. Senna, S.C. Ying, Phys. Rev. B 25, 2196 (1982) ADSCrossRefGoogle Scholar
  14. 14.
    T.A. Sedrakyan, M.E. Raikh, Phys. Rev. Lett. 100, 106806 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    A.Yu. Kuntsevich, G.V. Minkov, A.A. Sherstobitov, V.M. Pudalov, Phys. Rev. B 79, 205319 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    N.S. Averkiev, L.E. Golub, G.E. Pikus, JETP Lett. 86, 780 (1998) Google Scholar
  17. 17.
    T. Hassenkam, S. Pedersen, K. Baklanov, A. Kristensen, C.B. Sorensen, P.E. Lindelof, F.G. Pikus, G.E. Pikus, Phys. Rev. B 55, 9298 (1997) ADSCrossRefGoogle Scholar
  18. 18.
    F.E. Meeijr, A.F. Morpugo, T.M. Klapeijk, T. Koda, J. Nitta, Phys. Rev. B 70, 201307 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    D.R. Leadley, V.V. Andrievskii, I.B. Berkutov, Yu.F. Komnik, T. Hackbarth, O.A. Mironov, J. Low Temp. Phys. 159, 230 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    V.V. Andrievskii, I.B. Berkutov, T. Hackbarth, Yu.F. Komnik, O.A. Mironov, M. Myronov, V.I. Litvinov, T.E. Whall, in Molecular Nanowires and Other Quantum Objects, ed. by A.S. Alexandrov, J. Demsar, I.K. Yanson. NATO Science Series, II: Mathematics, Physics and Chemistry, vol. 148 (Kluwer Academic, Norwell, 2004), p. 319 Google Scholar
  21. 21.
    B.L. Altshuler, A.G. Aronov, D.E. Khmelnitsky, J. Phys. C 15, 7367 (1982) ADSCrossRefGoogle Scholar
  22. 22.
    P.A. Lee, T.V. Ramakrishnan, Phys. Rev. B 26, 4009 (1982) ADSCrossRefGoogle Scholar
  23. 23.
    I.B. Berkutov, V.V. Andrievskii, Yu.F. Komnik, O.A. Mironov, M. Myronov, D.R. Leadley, Low Temp. Phys. 32, 683 (2006) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • I. B. Berkutov
    • 1
  • V. V. Andrievskii
    • 1
  • Y. F. Komnik
    • 1
  • T. Hackbarth
    • 2
  • D. R. Leadley
    • 3
  • O. A. Mironov
    • 3
    • 4
  1. 1.B. Verkin Institute for Low Temperature Physics and EngineeringNational Academy of Sciences of UkraineKharkovUkraine
  2. 2.Forschungszentrum UlmDaimler AGUlmGermany
  3. 3.Department of PhysicsUniversity of WarwickCoventryUK
  4. 4.International Laboratory of High Magnetic Fields and Low TemperaturesWroclaw 47Poland

Personalised recommendations