Advertisement

Journal of Low Temperature Physics

, Volume 167, Issue 5–6, pp 588–594 | Cite as

Advanced Code-Division Multiplexers for Superconducting Detector Arrays

  • K. D. IrwinEmail author
  • H. M. Cho
  • W. B. Doriese
  • J. W. Fowler
  • G. C. Hilton
  • M. D. Niemack
  • C. D. Reintsema
  • D. R. Schmidt
  • J. N. Ullom
  • L. R. Vale
Article

Abstract

Multiplexers based on the modulation of superconducting quantum interference devices are now regularly used in multi-kilopixel arrays of superconducting detectors for astrophysics, cosmology, and materials analysis. Over the next decade, much larger arrays will be needed. These larger arrays require new modulation techniques and compact multiplexer elements that fit within each pixel. We present a new in-focal-plane code-division multiplexer that provides multiplexing elements with the required scalability. This code-division multiplexer uses compact lithographic modulation elements that simultaneously multiplex both signal outputs and superconducting transition-edge sensor (TES) detector bias voltages. It eliminates the shunt resistor used to voltage bias TES detectors, greatly reduces power dissipation, allows different dc bias voltages for each TES, and makes all elements sufficiently compact to fit inside the detector pixel area. These in-focal plane code-division multiplexers can be combined with multi-GHz readout based on superconducting microresonators to scale to even larger arrays.

Keywords

Superconducting transition-edge sensors SQUID multiplexers 

Notes

Acknowledgements

We acknowledge support from NASA under grant NNG09WF27I.

References

  1. 1.
    K.D. Irwin, Appl. Phys. Lett. 66, 1998 (1995) ADSCrossRefGoogle Scholar
  2. 2.
    J.A. Chervenak, K.D. Irwin, E.N. Grossman, J.M. Martinis, C.D. Reintsema, M.E. Huber, Appl. Phys. Lett. 74, 4043 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    J. Yoon, J. Clarke, J.M. Gildemeister, A.T. Lee, M.J. Myers, P.L. Richards, J.T. Skidmore, Appl. Phys. Lett. 78, 371 (2001) ADSCrossRefGoogle Scholar
  4. 4.
    B. Karasik, W. McGrath, Proc. of 12th International Symposium on Space Terahertz Technology (2001), p. 436 Google Scholar
  5. 5.
    M. Podt, J. Weenink, J. Flokstra, H. Rogalla, Physica C 368, 218 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    K.D. Irwin, M.D. Niemack, J. Beyer, H.M. Cho, W.B. Doriese, G.C. Hilton, C.D. Reintsema, D.R. Schmidt, J.N. Ullom, L.R. Vale, Supercond. Sci. Technol. 23, 034004 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    L. Gottardi, J. van der Kuur, P.A.J. de Korte, R. Den Hartog, B. Dirks, M. Popescu, H.F.C. Hoevers, AIP Conf. Proc. 1185, 538 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    J.W. Fowler, W.B. Doriese, G.C. Hilton, K.D. Irwin, D.R. Schmidt, G. Stiehl, J.N. Ullom, L.R. Vale, Proceedings LTD14, J. Low Temp. Phys. (2012) Google Scholar
  9. 9.
    M.D. Niemack, J. Beyer, H.M. Cho, W.B. Doriese, G.C. Hilton, K.D. Irwin, C.D. Reintsema, D.R. Schmidt, J.N. Ullom, L.R. Vale, Appl. Phys. Lett. 96, 1635093 (2010) CrossRefGoogle Scholar
  10. 10.
    H.H. Zappe, IEEE Trans. Magn. 13, 41 (1977) ADSCrossRefGoogle Scholar
  11. 11.
    J. Beyer, D. Drung, Supercond. Sci. Technol. 21, 105022 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    J.A.B. Mates, G.C. Hilton, K.D. Irwin, L.R. Vale, K.W. Lehnert, Appl. Phys. Lett. 92, 023514 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2012

Authors and Affiliations

  • K. D. Irwin
    • 1
    Email author
  • H. M. Cho
    • 1
  • W. B. Doriese
    • 1
    • 2
  • J. W. Fowler
    • 1
    • 2
  • G. C. Hilton
    • 1
  • M. D. Niemack
    • 1
    • 2
  • C. D. Reintsema
    • 1
  • D. R. Schmidt
    • 1
    • 2
  • J. N. Ullom
    • 1
  • L. R. Vale
    • 1
  1. 1.National Institute of Standards and TechnologyBoulderUSA
  2. 2.University of ColoradoBoulderUSA

Personalised recommendations