Journal of Low Temperature Physics

, Volume 167, Issue 5–6, pp 991–1003 | Cite as

Neutrino Physics with Low-Temperature Detectors

Article

Abstract

In the last years, neutrino physics has provided exciting discoveries that for the first time have cracked the solid building of the Standard Model. However, many mysteries remain, and prospects are even more appealing. Low temperature detectors can give fundamental contributions to this field. They already play a major role in the study of neutrinoless double beta decay, a rare nuclear process that can ascertain if neutrino is a self-conjugate elementary fermion and fix its mass scale. Cuoricino, a project based on macro-bolometers, is the most sensitive double-beta-decay search in the world together with the much debated Heidelberg–Moscow experiment. CUORE, its natural continuation, is one of the most promising experiments under construction or commissioning, capable to start to attack the so-called inverted hierarchy region of the neutrino mass pattern. Several ideas based on low-temperature detectors (among which the simultaneous detection of phonon and scintillation light) are among the most promising approaches for next-generation experiments, capable to cover fully the inverted hierarchy region. In other sectors of neutrino physics, like the direct measurement of the neutrino mass in the MARE and ECHO projects or the detection of coherent neutrino-nucleus elastic scattering, low temperature detectors look less mature scientifically. However, they remain extremely promising devices to address these very challenging searches.

Keywords

Neutrino mass Double beta decay Macrobolometers Microcalorimeters 

References

  1. 1.
    A. Strumia, F. Vissani, arXiv:hep-ph/0606054v3 (2006)
  2. 2.
    J. Lesgourgues, S. Pastor, Phys. Rep. 429, 307 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    F.T. Avignone III, S.R. Elliott, J. Engel, Rev. Mod. Phys. 80, 481 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    E.W. Otten, C. Weinheimer, Rep. Prog. Phys. 71, 086201 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    G. Mention et al., arXiv:1101.2755v4 (2011)
  6. 6.
    C. Enss (ed.), Cryogenic Particle Detection. Topics in Applied Physics, vol. 99 (Springer, Berlin, 2005) Google Scholar
  7. 7.
    F. Bezrukov, H. Hettmansperger, M. Lindner, Phys. Rev. D 81, 085032 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, Mod. Phys. Lett. A 21, 1547 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    E. Andreotti et al., Astropart. Phys. 34, 822 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    C. Arnaboldi et al., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 518, 775 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    M. Pavan et al., Eur. Phys. J. A 36, 159 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    L. Foggetta et al., Appl. Phys. Lett. 86, 134186 (2005) CrossRefGoogle Scholar
  13. 13.
    L. Foggetta et al., Astropart. Phys. 34, 809 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    C. Nones et al., Superconducting aluminum layers as pulse shape modifiers: an innovative solution to fight against surface background in 0νββ experiments. J. Low Temp. Phys. (2012). doi:10.1007/s10909-012-0558-y (this issue) Google Scholar
  15. 15.
    C. Bucci, P. Gorla, W. Seidel, arXiv:1103.5296v1 (2011)
  16. 16.
    T. Tabarelli de Fatis, Eur. Phys. J. C 65, 359 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    J.W. Beeman et al., arXiv:1106.6286v1 (2011)
  18. 18.
    L. Gonzalez-Mestres, D. Perret-Gallix, in Low Temperature Detectors for Neutrinos and Dark Matter—II, Proceedings of LTD-2, Annecy, France (Editions Frontières, Gif-sur-Yvette, 1988) Google Scholar
  19. 19.
    A. Alessandrello et al., Phys. Lett. B 420, 109 (1998) ADSCrossRefGoogle Scholar
  20. 20.
    G. Angloher et al., Astropart. Phys. 18, 43 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    A. Giuliani et al., LUCIFER: an experimental breakthrough in the search for neutrinoless double beta decay, in Proceedings of the 5th International BEYOND 2010 Conference, Cape Town, South Africa (World Scientific, Singapore, 2010) Google Scholar
  22. 22.
    C. Arnaboldi et al., Astropart. Phys. 34, 143 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    L. Gironi et al., J. Instrum. 5, P11007 (2010) CrossRefGoogle Scholar
  24. 24.
    C. Arnaboldi et al., Astropart. Phys. 34, 344 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    S.J. Lee et al., Astropart. Phys. 34, 732 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    J.W. Beeman et al., An improved ZnMoO4 scintillating bolometer for the search for neutrinoless double beta decay of 100Mo. J. Low Temp. Phys. (2012). doi:10.1007/s10909-012-0573-2 (this issue) Google Scholar
  27. 27.
    C. Arnaboldi et al., Astropart. Phys. 34, 797 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    N. Coron et al., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 520, 159 (2004) ADSCrossRefGoogle Scholar
  29. 29.
    J. Wolf, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 623, 442 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    E. Andreotti, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 572, 208 (2007) ADSCrossRefGoogle Scholar
  31. 31.
    J.P. Porst et al., Metallic magnetic calorimeters with superconducting rhenium absorber for direct neutrino mass measurements. J. Low Temp. Phys. (2012) (this issue) Google Scholar
  32. 32.
    A. Nucciotti, E. Ferri, O. Cremonesi, Astropart. Phys. 34, 80 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    M. Galeazzi et al., Phys. Rev. Lett. 86, 1978 (2001) ADSCrossRefGoogle Scholar
  34. 34.
    A. De Rujula, M. Lusignoli, Phys. Lett. B 118, 429 (1982) ADSCrossRefGoogle Scholar
  35. 35.
    A. Nucciotti et al., arXiv:1012.2290v1 (2012)
  36. 36.
    A.J. Anderson et al., arXiv:1103.4894v1 (2011)
  37. 37.
    J.A. Formaggio et al., arXiv:1107.3512v2 (2011)

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Centre de Spectrométrie Nucléaire et de Spectrométrie de MasseOrsay CampusFrance

Personalised recommendations