Advertisement

Journal of Low Temperature Physics

, Volume 167, Issue 5–6, pp 1021–1028 | Cite as

An Improved ZnMoO4 Scintillating Bolometer for the Search for Neutrinoless Double Beta Decay of 100Mo

  • J. W. Beeman
  • F. A. Danevich
  • V. Y. Degoda
  • E. N. Galashov
  • A. Giuliani
  • I. M. Ivanov
  • M. Mancuso
  • S. Marnieros
  • C. Nones
  • G. Pessina
  • E. Olivieri
  • C. Rusconi
  • V. N. Shlegel
  • V. I. Tretyak
  • Y. V. Vasiliev
Article

Abstract

We present a prototype scintillating bolometer for the search for neutrinoless double β decay of 100Mo, consisting of a single ≈5 g ZnMoO4 crystal operated aboveground in the 20–30 mK temperature range. The scintillation light is read out by two thin Ge bolometers. The phonon signals are collected by NTD Ge thermistors. The ZnMoO4 crystal was grown with an advanced method (low-thermal-gradient Czochralski technique) and after purification of molybdenum. The results are very encouraging: the intrinsic energy resolution of the heat channel is ≈800 eV FWHM, the α/β rejection factor (crucial for background suppression) is better than 99.9% in the region of interest for double β decay (≈3 MeV), and the radiopurity of ZnMoO4 looks substantially improved with respect to previous devices.

Keywords

Double beta decay Neutrino mass Low background Bolometric technique ZnMoO4 crystals 

Notes

Acknowledgement

The work of F.A. Danevich was supported by a Cariplo Foundation fellowship organized by the Landau Network—Centro Volta (Como, Italy). The group from the Institute for Nuclear Research (Kyiv, Ukraine) was supported in part through the Project “Kosmo-mikrofizyka-2” (Astroparticle Physics) of the National Academy of Sciences of Ukraine. The light detectors have been realized within the project LUCIFER, funded by the European Research Council under the EU Seventh Framework Programme (ERC grant agreement No. 247115).

References

  1. 1.
    F.T. Avignone III, S.R. Elliott, J. Engel, Rev. Mod. Phys. 80, 481 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    A. Strumia, F. Vissani, arXiv:hep-ph/0606054v3
  3. 3.
    E. Fiorini, T.O. Niinikoski, Nucl. Instrum. Methods 224, 83 (1984) CrossRefGoogle Scholar
  4. 4.
    A. Alessandrello et al., Phys. Lett. B 420, 109 (1998) ADSCrossRefGoogle Scholar
  5. 5.
    S.J. Lee et al., Astropart. Phys. 34, 732 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    E.N. Galashov et al., Funct. Mater. 17, 504 (2010) Google Scholar
  7. 7.
    A.L. Efros, B.I. Shklovskii, J. Phys. C 8, L49 (1975) ADSCrossRefGoogle Scholar
  8. 8.
    C. Arnaboldi et al., Astropart. Phys. 34, 344 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    L. Gironi et al., J. Instrum. 5, P11007 (2010) CrossRefGoogle Scholar
  10. 10.
    C. Arnaboldi et al., Astropart. Phys. 34, 797 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    J. Beeman et al., arXiv:1112.3672v1

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • J. W. Beeman
    • 1
  • F. A. Danevich
    • 2
  • V. Y. Degoda
    • 3
  • E. N. Galashov
    • 4
  • A. Giuliani
    • 5
    • 7
  • I. M. Ivanov
    • 4
  • M. Mancuso
    • 5
    • 7
  • S. Marnieros
    • 5
  • C. Nones
    • 5
    • 6
  • G. Pessina
    • 8
  • E. Olivieri
    • 5
  • C. Rusconi
    • 7
  • V. N. Shlegel
    • 4
  • V. I. Tretyak
    • 2
  • Y. V. Vasiliev
    • 4
  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Institute for Nuclear ResearchKyivUkraine
  3. 3.Kyiv National Taras Shevchenko UniversityKyivUkraine
  4. 4.Nikolaev Institute of Inorganic ChemistryNovosibirskRussia
  5. 5.Centre de Spectrométrie Nuclèaire et de Spectrométrie de MasseCNRS and Université Paris-SudOrsayFrance
  6. 6.Service de Physique des ParticulesCEA/DSM/IRFU/SPPGif-sur-YvetteFrance
  7. 7.Dipartimento di Fisica e MatematicaUniversità dell’InsubriaComoItaly
  8. 8.Sezione di Milano-BicoccaIstituto Nazionale di Fisica NucleareMilanoItaly

Personalised recommendations