Advertisement

Journal of Low Temperature Physics

, Volume 167, Issue 5–6, pp 671–677 | Cite as

Novel Frequency-Domain Multiplexing MKID Readout for the LiteBIRD Satellite

  • K. Hattori
  • S. Ariyoshi
  • M. Hazumi
  • H. Ishino
  • A. Kibayashi
  • S. Mima
  • C. Otani
  • N. Satoh
  • T. Tomaru
  • M. Yoshida
  • H. Watanabe
Article

Abstract

The satellite LiteBIRD (Light satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection) is being designed to detect the B-mode polarization of the cosmic microwave background radiation. LiteBIRD will carry about 2,000 detectors for measurements in five bands (60, 80, 100, 150, and 220 GHz). Microwave kinetic inductance detectors (MKIDs) that can be multiplexed in a single readout line are suitable for the large focal plane detector array. We develop an MKID readout system for LiteBIRD to monitor the amplitude, phase, and resonant frequency of each MKID resonator simultaneously and follow movements of the resonant frequency caused by changes in the input radiation intensity. This mechanism enables us to have a larger dynamic range for the MKIDs, compared with a system that monitors the amplitude and phase on the resonant frequency. We also propose an MKID having a half-wavelength resonator. This MKID transmits the resonant microwave signal from one feedline to another. It can offer clear microwaves passing through the resonators, even if the coupling and internal quality factors are mismatched. With this MKID, our readout system can track resonance frequency changes much more easily. We present the status of the readout system development and demonstrate the performance with the half-wavelength MKID.

Keywords

Frequency-domain multiplexing Microwave kinetic inductance detectors Cosmic microwave background radiation 

Notes

Acknowledgements

This work was partly supported by Grants-in-Aid for Scientific Research on Innovative Areas No. 21111002 and No. 21111003. We acknowledge support from the Department of Physics, Okayama University, and the Detector Technology Project at the High Energy Accelerator Research Organization (KEK).

References

  1. 1.
    M. Hazumi, AIP Conf. Proc. 1040, 78 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas, Nature 425, 817 (2003) ADSCrossRefGoogle Scholar
  3. 3.
    L.J. Swenson, A. Cruciani, A. Benoit, M. Roesch, C.S. Yung, A. Bideaud, A. Monfardini, Appl. Phys. Lett. 96, 263511 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    L.J. Swenson, J. Minet, G.J. Grabovskij, O. Buisson, F. Lecocq, C. Hoffmann, P. Camus, J.-C. Villegier, S. Doyle, P. Mauskopf, M. Roesch, M. Calvo, C. Giordano, S.J.C. Yates, A.M. Baryshev, J.J.A. Baselmans, A. Benoit, A. Monfardini, in Low Temperature Detectors LTD 13, Proceedings of the 13th International Workshop. AIP Conf. Proc., vol. 1185 (AIP, New York, 2009), p. 84 Google Scholar
  5. 5.
    S.J.C. Yates, A.M. Baryshev, J.J.A. Baselmans, B. Klein, R. Güsten, Appl. Phys. Lett. 95, 042504 (2009) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • K. Hattori
    • 1
  • S. Ariyoshi
    • 2
  • M. Hazumi
    • 3
  • H. Ishino
    • 1
  • A. Kibayashi
    • 1
  • S. Mima
    • 1
  • C. Otani
    • 2
  • N. Satoh
    • 3
  • T. Tomaru
    • 3
  • M. Yoshida
    • 3
  • H. Watanabe
    • 4
  1. 1.Department of PhysicsOkayama UniversityKita-ku OkayamaJapan
  2. 2.Terahertz-wave Research GroupRIKENWakoJapan
  3. 3.KEKHigh Energy Accelerator Research OrganizationTsukubaJapan
  4. 4.SOKENDAITsukubaJapan

Personalised recommendations