Advertisement

Journal of Low Temperature Physics

, Volume 167, Issue 5–6, pp 859–864 | Cite as

An Overview of the SPTpol Experiment

  • L. Bleem
  • P. Ade
  • K. Aird
  • J. Austermann
  • J. Beall
  • D. Becker
  • B. Benson
  • J. Britton
  • J. Carlstrom
  • C. L. Chang
  • H. Cho
  • T. de Haan
  • T. Crawford
  • A. Crites
  • A. Datesman
  • M. Dobbs
  • W. Everett
  • A. Ewall-Wice
  • E. George
  • N. Halverson
  • N. Harrington
  • J. Henning
  • G. Hilton
  • W. Holzapfel
  • S. Hoover
  • J. Hubmayr
  • K. Irwin
  • R. Keisler
  • J. Kennedy
  • A. Lee
  • E. Leitch
  • D. Li
  • M. Lueker
  • D. P. Marrone
  • J. McMahon
  • J. Mehl
  • S. Meyer
  • J. Montgomery
  • T. Montroy
  • T. Natoli
  • J. Nibarger
  • M. Niemack
  • V. Novosad
  • S. Padin
  • C. Pryke
  • C. Reichardt
  • J. Ruhl
  • B. Saliwanchik
  • J. Sayre
  • K. Schafer
  • E. Shirokoff
  • K. Story
  • K. Vanderlinde
  • J. Vieira
  • G. Wang
  • R. Williamson
  • V. Yefremenko
  • K. W. Yoon
  • E. Young
Article

Abstract

In 2012 the South Pole Telescope (SPT) will begin a 625 deg2 survey to measure the polarization anisotropy of the cosmic microwave background (CMB). Observations of the CMB B-mode angular power spectrum will be used to search for the large angular scale signal induced by inflationary gravitational waves. Additionally, the B-mode spectrum will enable a measurement of the neutrino mass through the gravitational lensing of the CMB. The new 780 pixel polarization-sensitive camera is composed of two different detector architectures and will map the sky at two frequencies. At 150 GHz, the camera consists of arrays of corrugated feedhorn-coupled TES polarimeters fabricated at the National Institute of Standards and Technology (NIST). At 90 GHz, we use individually packaged dual-polarization absorber-coupled polarimeters developed at Argonne National Laboratory. Each 90 GHz pixel couples to the telescope through machined contoured feedhorns. The entire focal plane is read out using a digital frequency-domain multiplexer system. We discuss the design and goals of this experiment and provide a description of the detectors.

Keywords

Polarimetry Transition-edge sensors Bolometers Cosmic microwave background Cosmology 

Notes

Acknowledgements

The South Pole Telescope is supported by the National Science Foundation through grants ANT-0638937 and ANT-0130612. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation and the Gordon and Betty Moore Foundation. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, the Quebec Fonds de recherche sur la nature et les technologies, and the Canadian Institute for Advanced Research. Work at NIST is supported by the NIST Innovations in Measurement Science program. The work at Argonne National Laboratory, including the use of facility at the Center for Nanoscale Materials (CNM), was supported by Office of Science and Office of Basic Energy Sciences of the U.S. Department of Energy, under Contract No. DEAC02-06CH11357. Technical support from Nanofabrication Group at the CNM, Argonne National Laboratory, under User Proposal #164 and #467, is gratefully acknowledged.

References

  1. 1.
    S. Dodelson et al., arXiv:0902.3796 (2009)
  2. 2.
    J. Lesgourgues, S. Pastor, Phys. Rep. 429, 307 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    J. Kovac et al., Nature 420, 772 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    C. Pryke et al., Astrophys. J. 692, 1247–1270 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    C.H. Chiang et al., Astrophys. J. 711, 1123–1140 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    QUIET Collaboration, arXiv:1012.3191 (2010)
  7. 7.
    J.E. Carlstrom et al., Publ. Astron. Soc. Pac. 123, 568 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    K. Vanderlinde et al., Astrophys. J. 722, 1180 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    R. Williamson et al., Astrophys. J. 738, 139 (2011). arXiv:1101.1290 ADSCrossRefGoogle Scholar
  10. 10.
    R. Keisler et al., Astrophys. J. 743, 28 (2011). arXiv:1105.3182 ADSCrossRefGoogle Scholar
  11. 11.
    E. Shirokoff et al., Astrophys. J (in press) (2011). arXiv:1012.4788
  12. 12.
    P.A. Ade, R. Pisano, G.C. Tucker, S. Weaver, Proc. SPIE 6275, 62750U (2006) ADSCrossRefGoogle Scholar
  13. 13.
    M. Dobbs et al., IEEE Trans. Nucl. Sci. 55(l), 21–26 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    J. McMahon et al., AIP Conf. Proc. 1185, 490 (2009). doi: 10.1063/1.3292386 ADSCrossRefGoogle Scholar
  15. 15.
    J. Britton et al., Proc. SPIE 7741, 77410T (2010) CrossRefGoogle Scholar
  16. 16.
    Granet et al., IEEE Trans. Antennas Propag. 52(3), 848–854 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    Zeng et al., IEEE Trans. Antennas Propag. 58(4), 1383–1387 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    Hubmayr et al., J. Low Temp. Phys. (2012) this issue Google Scholar
  19. 19.
    Chang et al., J. Low Temp. Phys. (2012) this issue Google Scholar
  20. 20.
    McMahon et al., AIP Conf. Proc. 1185, 511. doi: 10.1063/1.329291
  21. 21.
    Bleem et al., AIP Conf. Proc. 1185, 479 (2009). doi: 10.1063/1.3292382 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • L. Bleem
    • 1
  • P. Ade
    • 2
  • K. Aird
    • 1
  • J. Austermann
    • 3
  • J. Beall
    • 4
  • D. Becker
    • 4
  • B. Benson
    • 1
  • J. Britton
    • 4
  • J. Carlstrom
    • 1
    • 5
  • C. L. Chang
    • 1
    • 5
  • H. Cho
    • 4
  • T. de Haan
    • 6
  • T. Crawford
    • 1
  • A. Crites
    • 1
  • A. Datesman
    • 7
  • M. Dobbs
    • 6
  • W. Everett
    • 1
  • A. Ewall-Wice
    • 1
  • E. George
    • 8
  • N. Halverson
    • 3
  • N. Harrington
    • 8
  • J. Henning
    • 3
  • G. Hilton
    • 4
  • W. Holzapfel
    • 8
  • S. Hoover
    • 1
  • J. Hubmayr
    • 4
  • K. Irwin
    • 4
  • R. Keisler
    • 1
  • J. Kennedy
    • 6
  • A. Lee
    • 8
  • E. Leitch
    • 1
  • D. Li
    • 4
  • M. Lueker
    • 9
  • D. P. Marrone
    • 15
  • J. McMahon
    • 10
  • J. Mehl
    • 1
  • S. Meyer
    • 1
  • J. Montgomery
    • 1
  • T. Montroy
    • 12
  • T. Natoli
    • 1
  • J. Nibarger
    • 4
  • M. Niemack
    • 4
  • V. Novosad
    • 7
  • S. Padin
    • 9
  • C. Pryke
    • 11
  • C. Reichardt
    • 8
  • J. Ruhl
    • 12
  • B. Saliwanchik
    • 12
  • J. Sayre
    • 12
  • K. Schafer
    • 13
  • E. Shirokoff
    • 9
  • K. Story
    • 1
  • K. Vanderlinde
    • 6
  • J. Vieira
    • 9
  • G. Wang
    • 7
  • R. Williamson
    • 1
  • V. Yefremenko
    • 7
  • K. W. Yoon
    • 14
  • E. Young
    • 8
  1. 1.Kavli Institute for Cosmological Physics, Department of Physics, Enrico Fermi InstituteThe University of ChicagoChicagoUSA
  2. 2.Cardiff School of Physics and AstronomyCardiff UniversityCardiffUK
  3. 3.Department of Astrophysical and Planetary SciencesUniversity of ColoradoBoulderUSA
  4. 4.NISTBoulderUSA
  5. 5.Argonne National Laboratory—HEP DivisionArgonneUSA
  6. 6.McGill UniversityMontrealCanada
  7. 7.Argonne National Laboratory—MSDArgonneUSA
  8. 8.University of CaliforniaBerkeleyUSA
  9. 9.California Institute of TechnologyPasadenaUSA
  10. 10.University of MichiganAnn ArborUSA
  11. 11.University of MinnesotaMinneapolisUSA
  12. 12.Case Western Reserve UniversityClevelandUSA
  13. 13.School of the Art Institute of ChicagoChicagoUSA
  14. 14.Stanford UniversityPalo AltoUSA
  15. 15.Steward ObservatoryUniversity of ArizonaTucsonUSA

Personalised recommendations