Advertisement

Journal of Low Temperature Physics

, Volume 167, Issue 3–4, pp 373–378 | Cite as

Development of Crystal Al MKIDs by Molecular Beam Epitaxy

  • M. NaruseEmail author
  • Y. Sekimoto
  • T. Noguchi
  • A. Miyachi
  • T. Nitta
  • Y. Uzawa
Article

Abstract

We report here the effect of film qualities in superconductors on the properties of Microwave Kinetic Inductance Detectors (MKIDs). The sensitivity of MKIDs between crystal aluminum films and amorphous aluminum films is compared. The good quality and crystallized aluminum films have been prepared by using molecular beam epitaxy. We have confirmed that epitaxial Al(111) films were grown on Si(111) substrates with X-ray diffraction and in-situ reflection high-energy electron diffraction measurements. The amorphous aluminum films on the Si(111) wafers have been deposited by electron beam evaporation. We have measured transmission losses of MKIDs, noise spectrum and relaxation time against optical pulses, changing MKIDs’ bath temperature from 0.11 K to 0.55 K in a dilution refrigerator. Despite of the improvement in normal resistivity, the quasiparticle decay time of both films are equivalent and 450 μs at 0.11 K. The electrical noise equivalent power of the both MKIDs are also comparable and around \(10^{-17}~\mbox{W}/\sqrt{\mbox{Hz}}\). Fabrication details and performance data of both films are presented.

Keywords

MKID Superconducting detector Molecular beam epitaxy mm-wave camera 

Notes

Acknowledgements

The authors would like to thank Norio Okada (NAOJ), Dr. Chiko Otani and Dr. Seiichiro Ariyoshi (RIKEN) for discussions and help; Prof. Teun Klapwijk, Dr. Akira Endo, and Dr. Rami Barends (TU Delft) for their kind caring. This research was partially supported by KAKENHI(21111003) and KAKENHI(21244023).

References

  1. 1.
    P.K. Day, J. Zmuidzinas, A. Vayonakis, H.G. LeDuc, B.A. Mazin, Nature 425, 817–821 (2003) ADSCrossRefGoogle Scholar
  2. 2.
    J.J.A. Baselmans, S.J.C. Yates, R. Barends, Y.J.Y. Lankwarden, J.R. Gao, H. Hoevers, T.M. Klapwijk, J. Low Temp. Phys. 151, 524–529 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    A.G. Kozorezov, A.F. Volkov, J.K. Wigmore, A. Peacock, A. Poelaert, R. den Hartog, Phys. Rev. B 61, 11807 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    J. Gao, J. Zmuidzinas, B.A. Mazin, B.A.H.G. LeDuc, P.K. Day, Appl. Phys. Lett. 90, 102507 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B.A. Mazin, P.K. Day, H.G. Leduc, Appl. Phys. Lett. 92, 152505 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    R. Barends, S. Van Vliet, J.J.A. Baselmans, S.J.C. Yates, J.R. Gao, T.M. Klapwijk, Phys. Rev. B 79, 020509 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    J.M. Sage, V. Bolkhovsky, W.D. Oliver, B. Turek, P.B. Welander, J. Appl. Phys. 109, 063915 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    Y. Miura, S. Fujieda, K. Hirose, Appl. Phys. Lett. 62, 1751 (1993) ADSCrossRefGoogle Scholar
  9. 9.
    R. Barends, de Technische Universiteit Delft, Ph.D. Thesis (2009) Google Scholar
  10. 10.
    R. Barends, J.J.A. Baselmans, S.J.C. Yates, J.R. Gao, J.N. Hovenier, T.M. Klapwijk, Phys. Rev. Lett. 100, 257002 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    S.B. Kaplan, C.C. Chi, D.N. Langenberg, J.J. Chang, S. Jafarey, D.J. Scalapino, Phys. Rev. B 14, 48854–48873 (1976) Google Scholar
  12. 12.
    J.J.A. Baselmans, S.J.C. Yates, AIP Conf. Proc. 1185, 160 (2009) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. Naruse
    • 1
    • 2
    • 3
    Email author
  • Y. Sekimoto
    • 1
    • 2
  • T. Noguchi
    • 1
  • A. Miyachi
    • 1
  • T. Nitta
    • 4
  • Y. Uzawa
    • 1
  1. 1.National Astronomical Observatory of JapanTokyoJapan
  2. 2.University of TokyoTokyoJapan
  3. 3.JSPS Research FellowTokyoJapan
  4. 4.University of TsukubaIbarakiJapan

Personalised recommendations