Bose and Fermi Gases with Lennard–Jones Interactions

Article

Abstract

We study a model for cold Bose and Fermi gases based on the Lennard–Jones interaction, using the optimized (Fermi-)hypernetted-chain ((F)HNC-EL) method. For comparison, we also have carried out path integral ground state Monte Carlo (PIGSMC) simulations in the Bose case. By varying the density and the coupling strength for the Lennard–Jones potential, we cover the whole range of dilute, weakly interacting gases up to the dense, strongly interacting case of liquid 3He and 4He. Below about 20 percent helium equilibrium density, the simplest version of the (F)HNC-EL theory is accurate within better than 1 percent.

Keywords

Bose gas Fermi gas Equation of state Scattering length 

References

  1. 1.
    L.D. Landau, E.M. Lifshitz, Statistical Physics, Course of Theoretical Physics, vol. V (Pergamon, London, 1958) Google Scholar
  2. 2.
    J. de Boer, A. Michels, Physica 6, 945 (1938) CrossRefGoogle Scholar
  3. 3.
    F. Luo, G.C. Mc Bane, G. Kim, C.F. Giese, W.R. Gentry, J. Chem. Phys. 98, 3564 (1993) ADSCrossRefGoogle Scholar
  4. 4.
    F. Luo, C.F. Giese, W.R. Gentry, J. Chem. Phys. 104, 1151 (1996) ADSCrossRefGoogle Scholar
  5. 5.
    W. Schöllkopf, J.P. Toennies, J. Chem. Phys. 104, 1155 (1996) ADSCrossRefGoogle Scholar
  6. 6.
    E. Feenberg, Theory of Quantum Fluids (Academic Press, New York, 1969) Google Scholar
  7. 7.
    H.K. Sim, C.-W. Woo, J.R. Buchler, Phys. Rev. A 2, 2024 (1970) ADSCrossRefGoogle Scholar
  8. 8.
    A.D. Jackson, A. Lande, R.A. Smith, Phys. Rep. 86, 55 (1982) ADSCrossRefGoogle Scholar
  9. 9.
    A.D. Jackson, A. Lande, R.A. Smith, Phys. Rev. Lett. 54, 1469 (1985) ADSCrossRefGoogle Scholar
  10. 10.
    E. Krotscheck, R.A. Smith, A.D. Jackson, Phys. Rev. A 33, 3535 (1986) ADSCrossRefGoogle Scholar
  11. 11.
    R.F. Bishop, in Condensed Matter Theories, vol. 10, ed. by M. Casas, J. Navarro, A. Polls (Nova Science Publishers, Commack, New York, 1995), pp. 483–508 Google Scholar
  12. 12.
    C.E. Campbell, R. Folk, E. Krotscheck, J. Low Temp. Phys. 105, 13 (1996) ADSCrossRefGoogle Scholar
  13. 13.
    A.D. Jackson, A. Lande, R.W. Guitink, R.A. Smith, Phys. Rev. B 31, 403 (1985) ADSCrossRefGoogle Scholar
  14. 14.
    A. Sarsa, K. Schmidt, W. Magro, J. Chem. Phys. 113, 1366 (2000) ADSCrossRefGoogle Scholar
  15. 15.
    R.E. Zillich, J.M. Mayrhofer, S.A. Chin, J. Chem. Phys. 132, 044103 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    K. Huang, C.N. Yang, Phys. Rev. 105, 767 (1957) MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    T.D. Lee, C.N. Yang, Phys. Rev. 105, 1119 (1957) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    E. Krotscheck, J. Low Temp. Phys. 119, 103 (2000) CrossRefGoogle Scholar
  19. 19.
    E. Krotscheck, in Introduction to Modern Methods of Quantum Many-Body Theory and Their Applications, Advances in Quantum Many-Body Theory, ed. by A. Fabrocini, S. Fantoni, E. Krotscheck, vol. 7 (World Scientific, Singapore, 2002), pp. 267–330 Google Scholar
  20. 20.
    E. Krotscheck, Phys. Rev. A 15, 397 (1977) ADSCrossRefGoogle Scholar
  21. 21.
    G.E. Astrakharchik, J. Boronat, J. Casulleras, S. Giorgini, Phys. Rev. Lett. 93, 200404 (2004) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsJohannes Kepler UniversityLinzAustria
  2. 2.Department of PhysicsUniversity at BuffaloSuny BuffaloUSA

Personalised recommendations