Textures of Superfluid 3He-B in Applied Flow and Comparison with Hydrostatic Theory

  • R. de Graaf
  • V. B. Eltsov
  • P. J. Heikkinen
  • J. J. Hosio
  • M. Krusius
Article

Abstract

Measurements of the order parameter texture of rotating superfluid 3He-B have been performed as a function of the applied azimuthal counterflow velocity down to temperatures of 0.2 Tc. The results are compared to the hydrostatic theory of 3He-B. Good agreement is found at all measured temperatures and rotation velocities when the flow anisotropy contribution to the textural free energy is adjusted. This gives a superfluid energy gap Δ(T) which agrees with that measured by Todoshchenko et al., with Δ(0)=1.97 kBTc at 29.0 bar. The B-phase susceptibility, longitudinal resonance frequency, and textural phase transition have been extracted from the measurements as a function of temperature and azimuthal counterflow velocity. Owing to decreasing absorption intensities the present measuring method, based on the line shape analysis of the NMR spectrum, loses its sensitivity with decreasing temperature. However, we find that in practice the measurement of vortex numbers and counterflow velocities is still feasible down to 0.2 Tc.

Keywords

Energy gap Density anisotropy Flare out texture Nuclear magnetic resonance Superfluid counterflow 

References

  1. 1.
    J. Kopu, R. Schanen, R. Blaauwgeers, V.B. Eltsov, M. Krusius, J.J. Ruohio, E.V. Thuneberg, J. Low Temp. Phys. 120, 213 (2000) CrossRefGoogle Scholar
  2. 2.
    R. Hänninen, V.B. Eltsov, A.P. Finne, R. de Graaf, J. Kopu, M. Krusius, R.E. Solntsev, J. Low Temp. Phys. 155, 98 (2009) CrossRefADSGoogle Scholar
  3. 3.
    R.E. Solntsev, R. de Graaf, V.B. Eltsov, R. Hänninen, M. Krusius, J. Low Temp. Phys. 148, 311 (2007) CrossRefADSGoogle Scholar
  4. 4.
    R. de Graaf, R. Hänninen, T.V. Chagovets, V.B. Eltsov, M. Krusius, R.E. Solntsev, J. Low Temp. Phys. 153, 197 (2008) CrossRefADSGoogle Scholar
  5. 5.
    V.B. Eltsov, A.I. Golov, R. de Graaf, R. Hänninen, M. Krusius, V.S. L’vov, R.E. Solntsev, Phys. Rev. Lett. 99, 265301 (2007) CrossRefADSGoogle Scholar
  6. 6.
    V.B. Eltsov, R. de Graaf, P.J. Heikkinen, J.J. Hosio, R. Hänninen, M. Krusius, V.S. L’vov, Phys. Rev. Lett. 105, 125301 (2010) CrossRefADSGoogle Scholar
  7. 7.
    E.V. Thuneberg, J. Low Temp. Phys. 122, 657 (2001) CrossRefGoogle Scholar
  8. 8.
    J. Kopu, J. Low Temp. Phys. 146, 47 (2007) CrossRefADSGoogle Scholar
  9. 9.
    D.D. Osheroff, W.F. Brinkman, Phys. Rev. Lett. 32, 584 (1974) CrossRefADSGoogle Scholar
  10. 10.
    R. Balian, N.R. Werthamer, Phys. Rev. 131, 1553 (1963) CrossRefADSGoogle Scholar
  11. 11.
    D. Vollhardt, P. Wölfle, The Superfluid Phases of Helium 3, p. 81 (Taylor & Francis, London, 1990) Google Scholar
  12. 12.
  13. 13.
    P.J. Hakonen, M. Krusius, M.M. Saloma, R.H. Salmelin, J.T. Simola, A.D. Gongadze, G.E. Vachnadze, G.A. Kharadze, J. Low Temp. Phys. 76, 225 (1989) CrossRefADSGoogle Scholar
  14. 14.
    M.M. Salomaa, J. Phys., Condens. Matter 2, 1325 (1990) CrossRefADSGoogle Scholar
  15. 15.
    W.F. Brinkman, H. Smith, D.D. Osheroff, E.I. Blount, Phys. Rev. Lett. 33, 624 (1974) CrossRefADSGoogle Scholar
  16. 16.
    V.B. Eltsov, R. de Graaf, P.J. Heikkinen, J.J. Hosio, R. Hänninen, M. Krusius, J. Low Temp. Phys. 161, 474 (2010) CrossRefADSGoogle Scholar
  17. 17.
    D.S. Greywall, Phys. Rev. B 33, 7520 (1986) CrossRefADSGoogle Scholar
  18. 18.
    T.D.C. Bevan, A.J. Manninen, J.B. Cook, H. Alles, J.R. Hook, H.E. Hall, J. Low Temp. Phys. 109, 423 (1997) ADSGoogle Scholar
  19. 19.
    I.A. Todoshchenko, H. Alles, A. Babkin, A.Y. Parshin, V. Tsepelin, J. Low Temp. Phys. 126, 1449 (2002) CrossRefGoogle Scholar
  20. 20.
    E.R. Dobbs, Helium Three, p. 512 (Oxford University Press, New York, 2000) Google Scholar
  21. 21.
    H.M. Bozler, P.D. Saundry, Hanh Inseob, S.T.P. Boyd, C.M. Gould, J. Low Temp. Phys. 89, 5 (1992) CrossRefADSGoogle Scholar
  22. 22.
    H.N. Scholz, Ph.D. thesis, Ohio State University, 1981 (unpublished) Google Scholar
  23. 23.
    Hahn Inseob, S.T.P. Boyd, H.M. Bozler, C.M. Gould, Phys. Rev. Lett. 81, 618 (1998) CrossRefADSGoogle Scholar
  24. 24.
    J.S. Korhonen, A.D. Gongadze, Z. Janú, Y. Kondo, M. Krusius, E.V. Thuneberg, Phys. Rev. Lett. 65, 1211 (1990) CrossRefADSGoogle Scholar
  25. 25.
    J.S. Korhonen, Y.M. Bunkov, V.V. Dmitriev, Y. Kondo, M. Krusius, Y.M. Mukharskiy, Ü. Parts, E.V. Thuneberg, Phys. Rev. B 46, 13983 (1992) CrossRefADSGoogle Scholar
  26. 26.
    Yu.M. Bunkov, G.E. Volovik, Phys. Rev. Lett. 98, 265302 (2007) CrossRefADSGoogle Scholar
  27. 27.
    V.B. Eltsov, R. de Graaf, M. Krusius, D.E. Zmeev, J. Low Temp. Phys. 162, 212 (2011) CrossRefADSGoogle Scholar
  28. 28.
    A.I. Ahonen, M. Krusius, M.A. Paalanen, J. Low Temp. Phys. 25, 421 (1976) CrossRefADSGoogle Scholar
  29. 29.
    D.D. Osheroff, W.J. Gully, R.C. Richardson, D.M. Lee, Phys. Rev. Lett. 29, 920 (1972) CrossRefADSGoogle Scholar
  30. 30.
    J.P. Davis, H. Choi, J. Pollanen, W.P. Halperin, J. Low Temp. Phys. 153, 1 (2008) CrossRefADSGoogle Scholar
  31. 31.
    A.P. Finne, S. Boldarev, V.B. Eltsov, M. Krusius, J. Low Temp. Phys. 136, 249 (2004) CrossRefADSGoogle Scholar
  32. 32.
    Yu.M. Bunkov, V.B. Eltsov, R. de Graaf, P.J. Heikkinen, J.J. Hosio, M. Krusius, G.E. Volovik, arXiv:1002.1674v1 [cond-mat.quant-gas] (2010)

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • R. de Graaf
    • 1
  • V. B. Eltsov
    • 1
  • P. J. Heikkinen
    • 1
  • J. J. Hosio
    • 1
  • M. Krusius
    • 1
  1. 1.Low Temperature Laboratory, School of Science and TechnologyAalto UniversityEspooFinland

Personalised recommendations