Journal of Low Temperature Physics

, Volume 162, Issue 3–4, pp 136–145

Giant Coupling Effects in Confined 4He Near Tλ

Article

Abstract

Superfluid 4He shares with superconductors a transition into a low temperature state where the order parameter is a wave function. For the low temperature superconductors, which have a large zero temperature correlation length, this results in well known Josephson effects reflecting the overlap of the wave function across barriers and weak links. Similar phenomena are harder to realize for 4He because the zero temperature correlation length is of the order of interatomic dimensions. The fact that for 4He the critical region, where the correlation length diverges, is accessible experimentally leads to a possible new kind of coupling. This differs from that of a superconductor in the sense that critical fluctuations are important. We have seen such coupling whereby two regions of confined 4He interact and influence their respective thermodynamic behavior (Perron et al. in Nat. Phys. 6:499–502, 2010). This interaction extends over length scales which are much larger than the correlation length. We describe measurements of heat capacity and superfluid density which illustrate this behavior.

Keywords

Helium four Superfluid transition Weak links effects Finite size effects Critical phenomena Finite size scaling Coupling effect Correlation lengths effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.K. Perron, M.O.K. Kimball, K.P. Mooney, F.M. Gasparini, Nat. Phys. 6, 499–502 (2010) CrossRefGoogle Scholar
  2. 2.
    J.D. Reppy, J. Low Temp. Phys. 87, 205–245 (1992) CrossRefADSGoogle Scholar
  3. 3.
    F.M. Gasparini, I. Rhee, in Progress in Low Temperature Physics, vol. 13, ed. by D.F. Brewer (North Holland, Amsterdam, 1992), pp. 1–90 Google Scholar
  4. 4.
    F.M. Gasparini, M.O.K. Kimball, K.P. Mooney, M. Diaz-Avila, Rev. Mod. Phys. 80, 1009–1059 (2009) CrossRefADSGoogle Scholar
  5. 5.
    M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1996) Google Scholar
  6. 6.
    K. Sukhatme, Y. Mucharsky, T. Chui, D. Pearson, Nature 411, 280–283 (2001) CrossRefADSGoogle Scholar
  7. 7.
    E. Hoskinson, Y. Sato, R.E. Packard, Phys. Rev. B, Condens. Matter Mater. Phys. 74, 100509 (2006) CrossRefADSGoogle Scholar
  8. 8.
    I. Bozovic, G. Logvenov, M.A.J. Verhoeven, P. Caputo, E. Goldobin, M.R. Beasley, Phys. Rev. Lett. 93, 157002 (2004) and references therein CrossRefADSGoogle Scholar
  9. 9.
    E. Polturak, G. Koren, D. Cohen, E. Aharoni, Phys. Rev. Lett. 67, 3038–3041 (1991) CrossRefADSGoogle Scholar
  10. 10.
    I. Rhee, D.J. Bishop, A. Petrou, F.M. Gasparini, Rev. Sci. Instrum. 61, 1528–1536 (1990) CrossRefADSGoogle Scholar
  11. 11.
    S. Mehta, M.O. Kimball, F.M. Gasparini, J. Low Temp. Phys. 114, 467–521 (1999) CrossRefGoogle Scholar
  12. 12.
    F.M. Gasparini, M.O. Kimball, S. Mehta, J. Low Temp. Phys. 125, 215–238 (2001) CrossRefGoogle Scholar
  13. 13.
    M.O. Kimball, Ph.D. Thesis, University at Buffalo, The State University of New York (2005) Google Scholar
  14. 14.
    K.P. Mooney, Ph.D. Thesis, University at Buffalo, The State University of New York (2006) Google Scholar
  15. 15.
    J.K. Perron, M.O.K. Kimball, K.P. Mooney, F.M. Gasparini, J. Phys., Conf. Ser. 150, 032082 (2009) CrossRefADSGoogle Scholar
  16. 16.
    M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181–1203 (1973) CrossRefADSGoogle Scholar
  17. 17.
    D.R. Nelson, J.M. Kostelitz, Phys. Rev. Lett. 39, 1201–1205 (1977) CrossRefADSGoogle Scholar
  18. 18.
    M.O.K. Kimball, K.P. Mooney, F.M. Gasparini, Phys. Rev. Lett. 92, 115301 (2004) CrossRefADSGoogle Scholar
  19. 19.
    M.E. Fisher, J. Phys. Soc. Jpn., Suppl. 26, 87–93 (1969) ADSGoogle Scholar
  20. 20.
    T.P. Chen, M.J. Di Pirro, A.A. Gaeta, F.M. Gasparini, J. Low Temp. Phys. 26(5/6), 927–944 (1977) CrossRefADSGoogle Scholar
  21. 21.
    T.P. Chen, M.J. Di Pirro, B. Bhattacharyya, F.M. Gasparini, Rev. Sci. Instrum. 51, 846–848 (1980) CrossRefADSGoogle Scholar
  22. 22.
    S. Mhlanga, F.M. Gasparini, Phys. Rev. B 33, 5066–5069 (1986) CrossRefADSGoogle Scholar
  23. 23.
    D.T. Smith, K.M. Godshalk, R.B. Hallock, Phys. Rev. B 36, 202–216 (1987) CrossRefADSGoogle Scholar
  24. 24.
    D. Marchand, L. Covaci, M. Berciu, M. Franz, Phys. Rev. Lett. 10, 097004 (2008) CrossRefADSGoogle Scholar
  25. 25.
    Y.G. Mamaladze, O.D. Cheishvili, Sov. Phys. JETP 23, 112 (1966); Z. Eksp. Teor. Fiz. 50, 169 (1966) ADSGoogle Scholar
  26. 26.
    Y.G. Mamaladze, Ž. èksp. Teor. Fiz. 52, 729 (1967) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Physics, The University at BuffaloState University of New YorkBuffaloUSA

Personalised recommendations