Advertisement

Journal of Low Temperature Physics

, Volume 162, Issue 5–6, pp 529–535 | Cite as

Analysis of the Low Temperature Magnetic Contributions to the Specific Heat of (Nd x Y1−x )2/3Ca1/3MnO3 (x=0, 0.1)

  • A. Feher
  • S. Dolya
  • E. FertmanEmail author
  • M. Kajňaková
  • V. Desnenko
  • J. Šebek
  • E. Šantavá
Article

Abstract

The low temperature specific heat of the colossal magnetoresistance compounds (Nd x Y1−x )2/3Ca1/3MnO3 (x=0, 0.1) for 0.4≤T<2 K in magnetic fields up to H=9 T has been studied. Applied magnetic fields lead to the drop of the low temperature specific heat by more than 2 orders, which implies a large magnetic contribution. Experimental data were successfully fitted by the sum of the hyperfine C hyp , the linear T-dependent C sg and the spin waves C sw contributions. The C sg attributed to the glassy state of the magnetic systems of the studied insulating compounds exponentially decreases with the increase of H up to ∼5 T. The C sw providing the best fitting of the experimental data is attributed to the ferromagnetic spin waves with pseudo gap Δ(H) in the spin–wave spectrum which increases linearly with the increase of the applied magnetic field. The Δ(0)∼0.8 K is approximately the same for both compounds studied.

Keywords

Specific heat Spin–wave excitations Magnetic glass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Coey, M. Viret, S. von Molnar, Adv. Phys. 48, 167 (1999) CrossRefADSGoogle Scholar
  2. 2.
    E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance (Springer, Berlin, 2002) Google Scholar
  3. 3.
    J.E. Gordon, R.A. Fisher, Y.X. Jia, N.E. Phillips, S.F. Reklis, D.A. Wright, A. Zettl, Phys. Rev. B 59, 127 (1999) CrossRefADSGoogle Scholar
  4. 4.
    J.M. De Teresa, M.R. Ibarra, J. García, J. Blasco, C. Ritter, P.A. Algarabel, A. Marquina, A. del Moral, Phys. Rev. Lett. 76, 3392 (1996) CrossRefADSGoogle Scholar
  5. 5.
    J. Hemberger, S. Lobina, H.-A. Krug von Nidda, N. Tristan, V.Yu. Ivanov, A.A. Mukhin, A.M. Balbashov, A. Loidl, Phys. Rev. B 70, 024414 (2004) CrossRefADSGoogle Scholar
  6. 6.
    J. Park, M.S. Kim, J.-G. Park, I.P. Swainson, H.-C. Ri, H.J. Lee, K.H. Kim, T.W. Noh, S.-W. Cheong, C. Lee, J. Korean Phys. Soc. 36, 412 (2000) Google Scholar
  7. 7.
    N. Ghosh, U.K. Rößler, K. Nenkov, C. Hucho, H.L. Bhat, K.-H. Müller, J. Phys., Condens. Matter 20, 395219 (2008) CrossRefGoogle Scholar
  8. 8.
    E. Fertman, A. Beznosov, V. Desnenko, M. Kajnakova, A. Feher, J. Phys., Conf. Ser. 150, 042031 (2009) CrossRefADSGoogle Scholar
  9. 9.
    A. Beznosov, E. Fertman, V. Desnenko, A. Feher, M. Kajnakova, A. Loginov, J. Phys., Conf. Ser. 200, 032007 (2010) CrossRefADSGoogle Scholar
  10. 10.
    E. Fertman, D. Sheptyakov, A. Beznosov, V. Desnenko, D. Khalyavin, J. Magn. Magn. Mater. 293, 787 (2005) CrossRefADSGoogle Scholar
  11. 11.
    E. Fertman, A. Beznosov, D. Sheptyakov, V. Desnenko, M. Kajnakova, A. Feher, J. Magn. Magn. Mater. 321, 316 (2009) CrossRefADSGoogle Scholar
  12. 12.
    E.O. Wollan, W.C. Koehler, Phys. Rev. 100, 545 (1955) CrossRefADSGoogle Scholar
  13. 13.
    X.-J. Fan, H. Koinuma, T. Hasegawa, Phys. Rev. 65, 144401 (2002) CrossRefGoogle Scholar
  14. 14.
    K. Liu, W. Wu, K.H. Ahn, T. Sulchek, C.L. Chien, J.Q. Xiao, Phys. Rev. B 54, 3007 (1996) CrossRefADSGoogle Scholar
  15. 15.
    C. Kittel, Quantum Theory of Solids (Wiley, New York, 1987) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • A. Feher
    • 1
  • S. Dolya
    • 2
  • E. Fertman
    • 2
    Email author
  • M. Kajňaková
    • 1
  • V. Desnenko
    • 2
  • J. Šebek
    • 3
  • E. Šantavá
    • 3
  1. 1.Centre of Low Temperature Physics of the Faculty of Science UPJŠ and IEP SASKošiceSlovakia
  2. 2.B.Verkin Institute for Low Temperature Physics & EngineeringNASUKharkovUkraine
  3. 3.Institute of Physics of AS CRPragueCzech Republic

Personalised recommendations