Journal of Low Temperature Physics

, Volume 162, Issue 5–6, pp 653–660 | Cite as

A Tunable Hybrid Electro-magnetomotive NEMS Device for Low Temperature Physics

  • E. Collin
  • T. Moutonet
  • J.-S. Heron
  • O. Bourgeois
  • Yu. M. Bunkov
  • H. Godfrin
Article

Abstract

Microfabrication techniques have made possible the realization of mechanical devices with dimensions in the micro- and nano-scale domain. At low temperatures, one can operate and study these devices in well-controlled conditions, namely low electrical noise and cryogenic vacuum, with the ability to use high magnetic fields and superconducting coating metals (Collin et al. in J. Low Temp. Phys. 150(5–6):739, 2008). Moreover, the temperature turns out to be a control parameter in the experimental study of mechanical dissipation processes, with the cryogenic environment ensuring that only low energy states are thermally populated. Immersed in a quantum fluid, these MEMS and NEMS devices (micro and nano electro-mechanical systems) can probe the excitations of the liquid at a smaller scale, with higher frequencies and better resolution than “classical” techniques (Triqueneaux et al. in Physica B 284:2141, 2000). We present experimental results obtained in vacuum on cantilever NEMS structures which can be both magnetomotive and electrostatically driven. The device is extremely sensitive with resolved displacements down to 1 Å using conventional room-temperature electronics. It is calibrated in situ, and frequency/non-linearity can be tuned electrostatically. The design should allow parametric amplification to be used.

Keywords

Mechanics NEMS Low temperatures Non-linearity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Collin, L. Filleau, T. Fournier, Y.M. Bunkov, H. Godfrin, J. Low Temp. Phys. 150(5–6), 739 (2008) CrossRefADSGoogle Scholar
  2. 2.
    S. Triqueneaux, E. Collin, D.J. Cousins, T. Fournier, C. Bäuerle, Yu.M. Bunkov, H. Godfrin, Physica B 284, 2141 (2000) CrossRefADSGoogle Scholar
  3. 3.
    M.A. Black, H.E. Hall, K. Thomson, In Proc. 10th Int. Conf. on Low Temperature Physics, p. 174 (1966) Google Scholar
  4. 4.
    M.A. Black, H.E. Hall, K. Thomson, J. Phys. C: Solid State Phys. 4, 129 (1971) CrossRefADSGoogle Scholar
  5. 5.
    A.M. Guénault, V. Keith, C.J. Kennedy, S.G. Mussett, G.R. Pickett, J. Low Temp. Phys. 62, 511 (1986) CrossRefADSGoogle Scholar
  6. 6.
    C. Bäuerle, Yu.M. Bunkov, S.N. Fisher, H. Godfrin, Phys. Rev. B 57, 14381 (1998) CrossRefADSGoogle Scholar
  7. 7.
    C.B. Winkelmann, E. Collin, Yu.M. Bunkov, H. Godfrin, J. Low Temp. Phys. 135, 3 (2004) CrossRefADSGoogle Scholar
  8. 8.
    C.B. Winkelmann, J. Elbs, Yu.M. Bunkov, E. Collin, H. Godfrin, M. Krusius, Nucl. Instrum. Methods Phys. Res. A 574, 264 (2007) CrossRefADSGoogle Scholar
  9. 9.
    R. König, P. Esquinazi, F. Pobell, J. Low Temp. Phys. 90, 55 (1993) CrossRefADSGoogle Scholar
  10. 10.
    D.O. Clubb, O.V.L. Buu, R.M. Bowley, R. Nyman, J.R. Owers-Bradley, J. Low Temp. Phys. 136(1–2) (2004). doi:10.1023/B:JOLT.0000035368.63197.16
  11. 11.
    R. Blaauwgeers, M. Blazkova, M. Clovecko, V.B. Eltsov, R. de Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, D.E. Zmeev, J. Low Temp. Phys. 146(5–6) (2007). doi:10.1007/s10909-006-9279-4
  12. 12.
    M. Blazkova, M. Clovecko, V.B. Eltsov, E. Gaûo, R. de Graaf, J.J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, W.F. Vinen, J. Low Temp. Phys. 150(3–4) (2008). doi:10.1007/s10909-007-9587-3
  13. 13.
    E. Collin, J. Kofler, S. Lakhloufi, S. Pairis, Yu.M. Bunkov, H. Godfrin, J. Appl. Phys. 107(11), 114905 (2010) CrossRefADSGoogle Scholar
  14. 14.
    E. Collin, J. Kofler, J.-S. Heron, O. Bourgeois, Yu.M. Bunkov, H. Godfrin, J. Low Temp. Phys. 158(3), 678 (2010) CrossRefADSGoogle Scholar
  15. 15.
    M.D. LaHaye, O. Buu, B. Camarota, K.C. Schwab, Science 304, 74 (2004) CrossRefADSGoogle Scholar
  16. 16.
    A.D. O’Connell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J.M. Martinis, A.N. Cleland, Nature 464, 697–703 (2010) CrossRefADSGoogle Scholar
  17. 17.
    J.-S. Heron, T. Fournier, N. Mingo, O. Bourgeois, Nano Lett. 9, 1861 (2009) CrossRefADSGoogle Scholar
  18. 18.
    B.E. DeMartini, J.F. Rhoads, K.L. Turner, S.W. Shaw, J. Moehlis, J. MEMS 16(2), 310 (2007) Google Scholar
  19. 19.
    E. Collin et al., Phys. Rev. B (2010, submitted) Google Scholar
  20. 20.
    I. Kozinsky, H.W.Ch. Postma, I. Bargatin, M.L. Roukes, Appl. Phys. Lett. 88, 253101 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • E. Collin
    • 1
  • T. Moutonet
    • 1
  • J.-S. Heron
    • 1
  • O. Bourgeois
    • 1
  • Yu. M. Bunkov
    • 1
  • H. Godfrin
    • 1
  1. 1.Institut NéelCNRS et Université Joseph FourierGrenoble Cedex 9France

Personalised recommendations