Advertisement

Journal of Low Temperature Physics

, Volume 161, Issue 5–6, pp 460–473 | Cite as

Topological Superfluid 3He–B: Fermion Zero Modes on Interfaces and in the Vortex Core

  • M. A. Silaev
  • G. E. Volovik
Article

Abstract

Many quantum condensed matter systems are strongly correlated and strongly interacting fermionic systems, which cannot be treated perturbatively. However, topology allows us to determine generic features of their fermionic spectrum, which are robust to perturbation and interaction. We discuss the nodeless 3D system, such as superfluid 3He–B, vacuum of Dirac fermions, and relativistic singlet and triplet supercondutors which may arise in quark matter. The systems, which have nonzero value of topological invariant, have gapless fermions on the boundary and in the core of quantized vortices. We discuss the index theorem which relates fermion zero modes on vortices with the topological invariants in combined momentum and coordinate space.

Keywords

Topological superfluid 3He–B Relativistic superconductor Index theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.Z. Hasan, C.L. Kane, Topological Insulators. arXiv:1002.3895
  2. 2.
    B.A. Volkov, A.A. Gorbatsevich, Yu.V. Kopaev, V.V. Tugushev, Macroscopic current states in crystals. JETP 54, 391–397 (1981) Google Scholar
  3. 3.
    B.A. Volkov, O.A. Pankratov, Two-dimensional massless electrons in an inverted contact. JETP Lett. 42, 178–181 (1985) ADSGoogle Scholar
  4. 4.
    H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009) CrossRefGoogle Scholar
  5. 5.
    D.D. Osheroff, R.C. Richardson, D.M. Lee, Evidence for a new phase of solid He-3. Phys. Rev. Lett. 28, 885–888 (1972) CrossRefADSGoogle Scholar
  6. 6.
    M.M. Salomaa, G.E. Volovik, Cosmiclike domain walls in superfluid 3He–B: Instantons and diabolical points in (k,r) space. Phys. Rev. B 37, 9298–9311 (1988) CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    X.-L. Qi, T.L. Hughes, S. Raghu, S.-C. Zhang, Time-reversal-invariant topological superconductors and superfluids in two and three dimensions. Phys. Rev. Lett. 102, 187001 (2009) CrossRefADSGoogle Scholar
  8. 8.
    A. Kitaev, Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22–30 (2009). arXiv:0901.2686 CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    A.P. Schnyder, S. Ryu, A. Furusaki, A.W.W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008) CrossRefADSGoogle Scholar
  10. 10.
    M. Stone, C.-K. Chiu, A. Roy, Symmetries, dimensions, and topological insulators: the mechanism behind the face of the Bott clock. arXiv:1005.3213
  11. 11.
    R. Jackiw, C. Rebbi, Solitons with fermion number 1/2. Phys. Rev. D 13, 3398–3409 (1976) CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Y. Nishida, Is a color superconductor topological? Phys. Rev. D 81, 074004 (2010) CrossRefADSGoogle Scholar
  13. 13.
    T. Ohsaku, BCS and generalized BCS superconductivity in relativistic quantum field theory: Formulation. Phys. Rev. B 65, 024512 (2001) CrossRefADSGoogle Scholar
  14. 14.
    G.E. Volovik, Quantum phase transitions from topology in momentum space, in Quantum Analogues: from Phase Transitions to Black Holes and Cosmology, ed. by W.G. Unruh, R. Schützhold. Lecture Notes in Physics, vol. 718 (Springer, Berlin, 2007), pp. 31–73. arXiv:cond-mat/0601372 CrossRefGoogle Scholar
  15. 15.
    R. Jackiw, P. Rossi, Zero modes of the vortex-fermion system. Nucl. Phys. B 190, 681–691 (1981) CrossRefADSGoogle Scholar
  16. 16.
    G.E. Volovik, Topological invariants for Standard Model: from semi-metal to topological insulator. JETP Lett. 91, 55–61 (2010). arXiv:0912.0502 CrossRefADSGoogle Scholar
  17. 17.
    Y. Nishida, L. Santos, C. Chamon, Topological superconductors as nonrelativistic limits of Jackiw-Rossi and Jackiw-Rebbi models. arXiv:1007.2201
  18. 18.
    T.Sh. Misirpashaev, G.E. Volovik, Fermion zero modes in symmetric vortices in superfluid 3He. Physica B 210, 338–346 (1995) CrossRefADSGoogle Scholar
  19. 19.
    G.E. Volovik, Topological invariant for superfluid 3He–B and quantum phase transitions. JETP Lett. 90, 587–591 (2009) CrossRefADSGoogle Scholar
  20. 20.
    S.M.A. Rombouts, J. Dukelsky, G. Ortiz, Quantum phase diagram of the integrable p x+ip y fermionic superfluid. arXiv:1008.3406
  21. 21.
    G.E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003) MATHGoogle Scholar
  22. 22.
    G.E. Volovik, The Superfluid Universe. arXiv:1004.0597
  23. 23.
    V. Gurarie, L. Radzihovsky, Resonantly-paired fermionic superfluids. Ann. Phys. 322, 2–119 (2007) MATHCrossRefMathSciNetADSGoogle Scholar
  24. 24.
    B. Beri, Topologically stable gapless phases of time-reversal invariant superconductors. Phys. Rev. B 81, 134515 (2010) CrossRefADSGoogle Scholar
  25. 25.
    G.E. Volovik, Fermion zero modes at the boundary of superfluid 3He–B. JETP Lett. 90, 398–401 (2009). arXiv:0907.5389 CrossRefADSGoogle Scholar
  26. 26.
    S.B. Chung, S.-C. Zhang, Detecting the Majorana fermion surface state of 3He–B through spin relaxation. Phys. Rev. Lett. 103, 235301 (2009). arXiv:0907.4394 CrossRefADSGoogle Scholar
  27. 27.
    M.M. Salomaa, G.E. Volovik, Quantized vortices in superfluid 3He. Rev. Mod. Phys. 59, 533–613 (1987) CrossRefADSGoogle Scholar
  28. 28.
    G.E. Volovik, Localized fermions on quantized vortices in superfluid 3He–B. J. Phys., Condens. Matter 3, 357–368 (1991) CrossRefADSGoogle Scholar
  29. 29.
    C. Caroli, P.G. de Gennes, J. Matricon, Phys. Lett. 9, 307 (1964) MATHCrossRefADSGoogle Scholar
  30. 30.
    G.E. Volovik, Vortex motion in Fermi superfluids and Callan-Harvey effect. JETP Lett. 57, 244–248 (1993) ADSGoogle Scholar
  31. 31.
    P.G. Grinevich, G.E. Volovik, Topology of gap nodes in superfluid 3He: π 4 homotopy group for 3He–B disclination. J. Low Temp. Phys. 72, 371–380 (1988) CrossRefADSGoogle Scholar
  32. 32.
    J.C.Y. Teo, C.L. Kane, Majorana fermions and non-Abelian statistics in three dimensions. Phys. Rev. Lett. 104, 046401 (2010) CrossRefADSGoogle Scholar
  33. 33.
    J.C.Y. Teo, C.L. Kane, Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010) CrossRefADSGoogle Scholar
  34. 34.
    C.-K. Lu, I.F. Herbut, Pairing symmetry and vortex zero-mode for superconducting Dirac fermions. arXiv:1007.3751
  35. 35.
    T. Mizushima, K. Machida, Vortex structures and zero-energy states in the BCS-to-BEC evolution of p-wave resonant Fermi gases. Phys. Rev. A 81, 053605 (2010) CrossRefADSGoogle Scholar
  36. 36.
    R.M. Lutchyn, J.D. Sau, S. Das Sarma, Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010) CrossRefADSGoogle Scholar
  37. 37.
    Y. Oreg, G. Refael, F. von Oppen, Helical liquids and Majorana bound states in quantum wires. arXiv:1003.1145
  38. 38.
    Z. Wang, X.-L. Qi, S.-C. Zhang, General theory of interacting topological insulators. arXiv:1004.4229
  39. 39.
    M.A. Silaev, Spectrum of bound fermion states on vortices in 3He–B. Pis’ma ZhETF 90, 433–439 (2009) Google Scholar
  40. 40.
    P. Hořava, Stability of Fermi surfaces and K-theory. Phys. Rev. Lett. 95, 016405 (2005) CrossRefADSGoogle Scholar
  41. 41.
    T. Faulkner, N. Iqbal, H. Liu, J. McGreevy, D. Vegh, From black holes to strange metals. arXiv:1003.1728
  42. 42.
    L. Fu, Hexagonal warping effects in the surface states of topological insulator Bi2Te3. Phys. Rev. Lett. 103, 266801 (2009) CrossRefADSGoogle Scholar
  43. 43.
    V.B. Eltsov, R. de Graaf, R. Hanninen, M. Krusius, R.E. Solntsev, V.S. L’vov, A.I. Golov, P.M. Walmsley, Turbulent dynamics in rotating helium superfluids, in Progress in Low Temperature Physics, vol. XVI (2009), pp. 45–146. arXiv:0803.3225

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute for Physics of Microstructures RASNizhny NovgorodRussia
  2. 2.Low Temperature LaboratoryAalto UniversityAaltoFinland
  3. 3.L.D. Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations