Journal of Low Temperature Physics

, Volume 160, Issue 5–6, pp 246–253 | Cite as

A New Type of Carbon Resistance Thermometer with Excellent Thermal Contact at Millikelvin Temperatures

  • Nodar Samkharadze
  • Ashwani Kumar
  • Gábor A. Csáthy
Article

Abstract

Using a new brand of commercially available carbon resistor we built a cryogenic thermometer with an extremely good thermal contact to its thermal environment. Because of its superior thermal contact the thermometer is insensitive to low levels of spurious radio frequency heating. We calibrated our thermometer down to 5 mK using a quartz tuning fork He-3 viscometer and measured its thermal resistance and thermal response time.

Keywords

Carbon composition thermometer Cryogenic thermometry Resistance thermometry Millikelvin thermometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Pobell, Matter and Methods at Low Temperatures, 2nd edn. (Springer, Berlin, 1996) Google Scholar
  2. 2.
    W.C. Black, W.R. Roach, J.C. Wheatley, Rev. Sci. Instr. 35, 587 (1964) CrossRefADSGoogle Scholar
  3. 3.
    J. Sanchez, A. Benoit, J. Floquet, G. Frossati, J. Phys., Coll. C1 35(1), C1–23 (1974) Google Scholar
  4. 4.
    J. Sanchez, A. Benoit, J. Floquet, Rev. Sci. Instr. 48, 1090 (1977) CrossRefADSGoogle Scholar
  5. 5.
    S. Kobayasi, M. Shinohara, K. Ono, Cryogenics 16, 597 (1976) CrossRefGoogle Scholar
  6. 6.
    K. Neumaier, Rev. Phys. Appl 19, 677 (1984) Google Scholar
  7. 7.
    Leiden Cryogenics, www.leidencryogenics.com
  8. 8.
  9. 9.
    R. Dötzer, W. Schoepe, Cryogenics 33, 936 (1993) CrossRefGoogle Scholar
  10. 10.
    M. Watanabe, M. Morishita, Y. Ootuka, Cryogenics 41, 143 (2001) CrossRefADSGoogle Scholar
  11. 11.
    J.E. Robichaux, A.C. Anderson, Rev. Sci. Instr. 40, 1512 (1969) CrossRefADSGoogle Scholar
  12. 12.
    W.L. Johnson, A.C. Anderson, Rev. Sci. Instr. 42, 1296 (1971) CrossRefADSGoogle Scholar
  13. 13.
    DuPont, Kapton type 30HN Google Scholar
  14. 14.
    Lakeshore Cryotronics, www.lakeshore.com
  15. 15.
    R. Blaauwgeers, M. Blazkova, M. Clovecko, V.B. Eltsov, R. de Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, D.E. Zmeev, J. Low. Temp. Phys. 146, 537 (2007) CrossRefADSGoogle Scholar
  16. 16.
    Spectrum Control, part number 56-721-012 Google Scholar
  17. 17.
    Emerson & Cuming, Eccobond 83 C Google Scholar
  18. 18.
    A.A. Abrikosov, I.M. Khalatnikov, Rep. Prog. Phys. 22, 329 (1959) CrossRefADSGoogle Scholar
  19. 19.
    M.P. Bertinat, D.S. Betts, D.F. Brewer, G.J. Butterworth, J. Low Temp. Phys. 16, 479 (1974) CrossRefADSGoogle Scholar
  20. 20.
    G.A. Csáthy et al., to be published Google Scholar
  21. 21.
    Y. Koike, T. Fukase, S. Morita, M. Okamura, N. Mikoshiba, Cryogenics 25, 499 (1985) CrossRefGoogle Scholar
  22. 22.
    R. Rosenbaum, G.E. Jones, T. Murphy, J. Low Temp. Phys. 139, 439 (2005) CrossRefADSGoogle Scholar
  23. 23.
    R.C.J. Yeager, S.S. Courts, W.E. Davenport, Proceedings of the Cryogenic Engineering Conference, Adv. Cryog. Eng., vol. 47 (Springer, Berlin, 2002), p. 1644 Google Scholar
  24. 24.
    Y. Oda, G. Fuji, H. Nagano, Cryogenics 14, 84 (1974) CrossRefGoogle Scholar
  25. 25.
    D.O. Edwards, R.E. Sarwinski, P. Seligmann, J.T. Tough, Cryogenics 8, 392 (1968) CrossRefGoogle Scholar
  26. 26.
    G. Eska, K. Neumaier, Cryogenics 23, 84 (1983) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nodar Samkharadze
    • 1
  • Ashwani Kumar
    • 1
  • Gábor A. Csáthy
    • 1
  1. 1.Department of PhysicsPurdue UniversityWest LafayetteUSA

Personalised recommendations