Journal of Low Temperature Physics

, Volume 160, Issue 5–6, pp 219–239 | Cite as

Notes on Measurement Methods of Mechanical Resonators Used in Low Temperature Physics

  • P. Skyba


Mechanical resonators like vibrating wires, grids, spheres, torsional oscillators and recently introduced tuning forks are very useful experimental tools used for the study of various physical characteristics of cryogenic liquids and gases. As the information about the physical interactions of the resonator with surrounding fluid is carried by the voltage or current, the physical quantities being measured by some technique, it is obvious that the measurement electronics and electrical connections themselves affect the precision of the measurements. The aim of this contribution is to show: (i) how the electronic circuitry used for measurements of these resonators influences the precision of measurements, (ii) how this circuitry contributes to the background of the measurements, which may lead to incorrect physical interpretation, (iii) to highlight crucial aspects of the measuring techniques applied and (iv) perhaps to offer a general recipe on how to deal with the measurement techniques for these resonators.


Mechanical resonators Vibrating wires Tuning forks Oscillating grids Quantum turbulence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.N. Fisher, A.M. Guénault, C.J. Kennedy, G.R. Pickett, Phys. Rev. Lett. 63, 2566 (1989) CrossRefADSGoogle Scholar
  2. 2.
    M.P. Enrico, S.N. Fisher, A.M. Guénault, G.R. Pickett, K. Torizuka, Phys. Rev. Lett. 70, 1846 (1993) CrossRefADSGoogle Scholar
  3. 3.
    S.N. Fisher, A.J. Hale, A.M. Guénault, G.R. Pickett, Phys. Rev. Lett. 86, 244 (2001) CrossRefADSGoogle Scholar
  4. 4.
    E. Collin, L. Filleau, T. Fournier, Y.M. Bunkov, H. Godfrin, J. Low Temp. Phys. 150, 739 (2008) CrossRefADSGoogle Scholar
  5. 5.
    G.W. Morley, A. Casey, C.P. Lusher, B. Cowan, J. Saunders, J.M. Parpia, J. Low Temp. Phys. 126, 557 (2002) CrossRefGoogle Scholar
  6. 6.
    J. Jager, B. Schuderer, W. Schoepe, Phys. Rev. Lett. 74, 566 (1995) CrossRefADSGoogle Scholar
  7. 7.
    D.O. Clubb, O.V.L. Buu, R.M. Bowley, R. Nyman, J.R. Owers-Bradley, J. Low Temp. Phys. 136(1–2), 1 (2004) CrossRefADSGoogle Scholar
  8. 8.
    R. Blaauwgeers, M. Blažková, M. Človečko, V.B. Eltsov, R. de Graaf, J.J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, D.E. Zmeev, J. Low Temp. Phys. 146(5–6), 537 (2007) CrossRefADSGoogle Scholar
  9. 9.
    M. Blažková, M. Človečko, V.B. Eltsov, E. Gažo, R. de Graaf, J.J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, W.F. Vinen, J. Low Temp. Phys. 150, 525 (2008) CrossRefADSGoogle Scholar
  10. 10.
    A.P. Sebedash, J.T. Tuoriniemi, E.M. Pentti, A.J. Salmela, J. Low Temp. Phys. 150, 181 (2008) CrossRefADSGoogle Scholar
  11. 11.
    E.M. Pentti, J.T. Tuoriniemi, A.J. Salmela, A.P. Sebedash, J. Low Temp. Phys. 150, 555 (2008) CrossRefADSGoogle Scholar
  12. 12.
    D.I. Bradley, J. Hayes, J. Low Temp. Phys. 119(5–6), 703 (2000) CrossRefGoogle Scholar
  13. 13.
    J. Martikainen, J. Tuoriniemi, J. Low Temp. Phys. 124, 367 (2001) CrossRefGoogle Scholar
  14. 14.
  15. 15.
    R.D. Grober, J. Acimovic, J. Schuck, D. Hessman, P.J. Kindlemann, J. Hespanha, S. Morse, K. Karrai, I. Tiemann, S. Morse, Rev. Sci. Instrum. 71, 2776 (2000) CrossRefADSGoogle Scholar
  16. 16.
    S. Holt, P. Skyba, to be published Google Scholar
  17. 17.
    D. Garg, V.B. Efimov, P.V.E. McClintock, private communications Google Scholar
  18. 18.
    V.B. Efimov, D. Garg, M. Giltrow, P.V.E. McClintock, L. Skrbek, W.F. Vinen, J. Low Temp. Phys. 158, 462 (2010) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Centre of Low Temperature Physics, Institute of Experimental PhysicsSAS and P.J. Šafárik University KošiceKošiceSlovakia
  2. 2.Department of PhysicsUniversity LancasterLancasterUK

Personalised recommendations