A Novel Design of a Low Temperature Preamplifier for Pulsed NMR Experiments of Dilute 3He in Solid 4He

  • C. Huan
  • S. S. Kim
  • L. Phelps
  • J. S. Xia
  • D. Candela
  • N. S. Sullivan
Article

Abstract

Recent experimental studies of solid 4He indicate a strong correlation between the crystal defects and the onset of a possible supersolid state. We use pulsed NMR techniques to explore the quantum dynamics of the 3He impurities in the solid 4He in order to examine certain theoretical models that describe how the disordered states are related to supersolidity. Because of the very small signal-to-noise ratio at low 3He concentration and the long spin-lattice relaxation time (T1), it is essential to significantly enhance the NMR sensitivity to be able to carry out the experiments. Here we present the design of a novel low temperature preamplifier which is built with a low noise pseudomorphic HEMT transistor that is embedded into a cross-coil NMR probe. With a low power dissipation of about 0.7 mW, the preamplifier is capable of providing a power gain of 30 dB. By deploying the preamplifier near the NMR coil below 4 K, the noise temperature of the receiver is reduced to approximately 1 K. This preamplifier design also has the potential to be adapted into a low temperature amplifier with both input and output impedance at 50 Ω or a low temperature oscillator.

Keywords

NMR Supersolid Defects Preamplifier 

PACS

07.57.Pt 67.80.D_ 84.30.Le 

References

  1. 1.
    E. Kim, M.W.H. Chan, Nature 427, 225 (2004) CrossRefADSGoogle Scholar
  2. 2.
    J. Day, J. Beamish, Nature 450, 853 (2007) CrossRefADSGoogle Scholar
  3. 3.
    A.S.C. Rittner, J.D. Reppy, Phys. Rev. Lett. 97, 165301 (2006) CrossRefADSGoogle Scholar
  4. 4.
    A.R. Allen, M.G. Richards, J. Schratter, J. Low Temp. Phys. 47(3/4), 289 (1982) CrossRefADSGoogle Scholar
  5. 5.
    P. Corboz, L. Pollet, N.V. Prokovf’ev, M. Troyer, Phys. Rev. Lett. 101, 155302 (2008) CrossRefADSGoogle Scholar
  6. 6.
    P.W. Anderson, Nat. Phys. 3, 160 (2007) CrossRefGoogle Scholar
  7. 7.
    V.N. Grigoriev, B.N. Esel’son, V.A. Mikheev, V.A. Slusarev, M.A. Strzhemechny, Yu.E. Shulman, J. Low Temp. Phys. 13(1/2), 65 (1973) CrossRefADSGoogle Scholar
  8. 8.
    R.A. Guyer, R.C. Richardson, L.I. Zane, Rev. Mod. Phys. 43, 532 (1971) CrossRefADSGoogle Scholar
  9. 9.
    Agilent Technologies Inc., ATF-35143 datasheet, Santa Clara, CA 95051 Google Scholar
  10. 10.
    J. Bodart, B.M. Garcia, L. Phelps, N.S. Sullivan, Rev. Sci. Instrum. 69, 319 (1998) CrossRefADSGoogle Scholar
  11. 11.
    N.S. Sullivan, J.S. Xia, E.D. Adams, G.S. Boebinger, H.J. Schneider-Muntau, Physica B 294–295, 519 (2001) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • C. Huan
    • 1
    • 2
  • S. S. Kim
    • 1
    • 2
  • L. Phelps
    • 1
  • J. S. Xia
    • 1
    • 2
  • D. Candela
    • 3
  • N. S. Sullivan
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of FloridaGainesvilleUSA
  2. 2.High B/T Facility, National High Magnetic Field LaboratoryUniversity of FloridaGainesvilleUSA
  3. 3.Department of PhysicsUniversity of MassachusettsAmherstUSA

Personalised recommendations