Journal of Low Temperature Physics

, Volume 157, Issue 3–4, pp 221–251

Quantum Size Effects in the Growth, Coarsening, and Properties of Ultra-thin Metal Films and Related Nanostructures

  • Mustafa M. Özer
  • Cai-Zhuang Wang
  • Zhenyu Zhang
  • Hanno H. Weitering
Article

DOI: 10.1007/s10909-009-9905-z

Cite this article as:
Özer, M.M., Wang, CZ., Zhang, Z. et al. J Low Temp Phys (2009) 157: 221. doi:10.1007/s10909-009-9905-z

Abstract

This review addresses the quantum mechanical nature of the formation and stability of ultrathin metal films. The competition between quantum confinement, charge spilling effects, and Friedel oscillations determines whether an atomically smooth metal film will be marginally, critically, or magically stable or totally unstable against roughening. Pb(111) films represent a special case, not only because of strong quantum oscillations in the stability of two-dimensional thin films but also because of the exceptionally fast coarsening of Pb nanoclusters. The latter appears to be due to the combined effects of size quantization and the existence of a unique mass exchange medium in the form of an unusually dense and highly dynamic wetting layer. The consequences of size quantization on the physical and chemical properties of the films are profound, some of which will be highlighted in this review.

Keywords

Metal films Metal islands Quantum size effects Electronic growth Stability Coarsening Superconductivity Work function Reactivity Catalysis 

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mustafa M. Özer
    • 1
  • Cai-Zhuang Wang
    • 2
  • Zhenyu Zhang
    • 1
    • 3
  • Hanno H. Weitering
    • 1
    • 3
  1. 1.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Ames Laboratory USDOE, Department of Physics and AstronomyIowa State UniversityAmesUSA
  3. 3.Department of Physics and AstronomyThe University of TennesseeKnoxvilleUSA

Personalised recommendations