Journal of Low Temperature Physics

, Volume 156, Issue 3–6, pp 268–278 | Cite as

Normal Fluid Eddies in the Thermal Counterflow past a Cylinder



A recent Particle Image Velocimetry (PIV) experiment in He II counterflow around a cylindrical obstacle showed the existence of apparently stationary normal fluid eddies both downstream (at the rear) and upstream (in front) of the cylinder. This rather surprising result does not have an analogue in experimental observations of classical fluid flows. We suggest that a qualitative explanation for the apparent stability of such eddies can be provided entirely from the viewpoint of classical fluid dynamics. We also discuss a possible connection between the emergence of the normal fluid eddies and the polarization of the vortex tangle in superfluid.


Superfluid Vortices Turbulence Particle-vortex interaction Flow visualization 


67.40.Vs 47.37.+q 47.27.-i 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.J. Donnelly, A.N. Karpetis, J.J. Niemela, K.R. Sreenivasan, W.F. Vinen, C.M. White, J. Low Temp. Phys. 126, 327 (2002) CrossRefGoogle Scholar
  2. 2.
    D. Celik, S.W. Van Sciver, Exp. Therm. Fluid Sci. 26, 971 (2002) CrossRefGoogle Scholar
  3. 3.
    T. Zhang, D. Celik, S.W. Van Sciver, J. Low Temp. Phys. 134, 985 (2004) CrossRefADSGoogle Scholar
  4. 4.
    G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Nature (London) 441, 588 (2006) CrossRefADSGoogle Scholar
  5. 5.
    T. Zhang, S.W. Van Sciver, J. Low Temp. Phys. 138, 865 (2005) CrossRefADSGoogle Scholar
  6. 6.
    T. Zhang, S.W. Van Sciver, Nat. Phys. 1, 36 (2005) CrossRefGoogle Scholar
  7. 7.
    S.W. Van Sciver, S. Fuzier, T. Xu, J. Low Temp. Phys. 148, 225 (2007) CrossRefADSGoogle Scholar
  8. 8.
    S. Fuzier, S.W. Van Sciver, T. Zhang, in Proc. 24th Int. Conf. Low Temp. Phys., Orlando, Florida, August 2005 (AIP, New York, 2006), pp. 203–204 Google Scholar
  9. 9.
    G.P. Bewley, M.S. Paoletti, K.R. Sreenivasan, D.P. Lathrop, Proc. Natl. Acad. Sci. USA 105, 13707 (2008) CrossRefADSGoogle Scholar
  10. 10.
    M.S. Paoletti, M.E. Fisher, K.R. Sreenivasan, D.P. Lathrop, Phys. Rev. Lett. 101, 154501 (2008) CrossRefADSGoogle Scholar
  11. 11.
    D.R. Poole, C.F. Barenghi, Y.A. Sergeev, W.F. Vinen, Phys. Rev. B 71, 064514 (2005) CrossRefADSGoogle Scholar
  12. 12.
    Y.A. Sergeev, C.F. Barenghi, D. Kivotides, Phys. Rev. B 74, 184506 (2006). Erratum, Phys. Rev. B 75, 019904(E) (2007) CrossRefADSGoogle Scholar
  13. 13.
    G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967) MATHGoogle Scholar
  14. 14.
    D. Kivotides, C.F. Barenghi, Y.A. Sergeev, Phys. Rev. B 75, 212502 (2007) CrossRefADSGoogle Scholar
  15. 15.
    D. Kivotides, C.F. Barenghi, Y.A. Sergeev, Phys. Rev. B 77, 014527 (2008) CrossRefADSGoogle Scholar
  16. 16.
    W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128, 167 (2002). Erratum, J. Low Temp. Phys. 129, 213 (2002) CrossRefGoogle Scholar
  17. 17.
    C.F. Barenghi, S. Hulton, D.C. Samuels, Phys. Rev. Lett. 89, 275301 (2002) CrossRefADSGoogle Scholar
  18. 18.
    R. Hänninen, M. Tsubota, W.F. Vinen, Phys. Rev. B 75, 064502 (2007) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Mechanical and Systems EngineeringNewcastle UniversityNewcastle upon TyneEngland, UK
  2. 2.School of Mathematics and StatisticsNewcastle UniversityNewcastle upon TyneEngland, UK

Personalised recommendations