Journal of Low Temperature Physics

, Volume 156, Issue 3–6, pp 193–214 | Cite as

Modeling Kelvin Wave Cascades in Superfluid Helium

  • G. Boffetta
  • A. Celani
  • D. Dezzani
  • J. Laurie
  • S. Nazarenko
Article

Abstract

We study two different types of simplified models for Kelvin wave turbulence on quantized vortex lines in superfluids near zero temperature. Our first model is obtained from a truncated expansion of the Local Induction Approximation (Truncated-LIA) and it is shown to possess the same scalings and the essential behaviour as the full Biot-Savart model, being much simpler than the later and, therefore, more amenable to theoretical and numerical investigations. The Truncated-LIA model supports six-wave interactions and dual cascades, which are clearly demonstrated via the direct numerical simulation of this model in the present paper. In particular, our simulations confirm presence of the weak turbulence regime and the theoretically predicted spectra for the direct energy cascade and the inverse wave action cascade. The second type of model we study, the Differential Approximation Model (DAM), takes a further drastic simplification by assuming locality of interactions in k-space via using a differential closure that preserves the main scalings of the Kelvin wave dynamics. DAMs are even more amenable to study and they form a useful tool by providing simple analytical solutions in the cases when extra physical effects are present, e.g. forcing by reconnections, friction dissipation and phonon radiation. We study these models numerically and test their theoretical predictions, in particular the formation of the stationary spectra, and closeness of numerics for the higher-order DAM to the analytical predictions for the lower-order DAM.

Keywords

Kelvin waves Wave turbulence 

PACS

67.25.dk 67.85.De 47.37.+q 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.F. Vinen, Phys. Rev. B 64, 134520 (2001) CrossRefADSGoogle Scholar
  2. 2.
    B.V. Svistunov, Phys. Rev. B 52, 3647 (1995) CrossRefADSGoogle Scholar
  3. 3.
    W.F. Vinen, Phys. Rev. B 61, 1410 (2000) CrossRefADSGoogle Scholar
  4. 4.
    E. Kozik, B. Svistunov, Phys. Rev. Lett. 92, 03501 (2004) CrossRefGoogle Scholar
  5. 5.
    S. Nazarenko, JETP Lett. 83(5), 198 (2006) CrossRefADSGoogle Scholar
  6. 6.
    D. Kivotides, J.C. Vassilicos, D.C. Samuels, C.F. Barenghi, Phys. Rev. Lett. 86, 3080 (2001) CrossRefADSGoogle Scholar
  7. 7.
    W.F. Vinen, M. Tsubota, A. Mitani, Phys. Rev. Lett. 91, 135301 (2003) CrossRefADSGoogle Scholar
  8. 8.
    E. Kozik, B. Svistunov, Phys. Rev. Lett. 94, 025301 (2005) CrossRefADSGoogle Scholar
  9. 9.
    K.W. Schwarz, Phys. Rev. B 31, 5782 (1985) CrossRefADSGoogle Scholar
  10. 10.
    P.M. Walmsey, A.I. Golov, H.E. Hall, A.A. Levchenko, W.F. Vinen, Phys. Rev. Lett. 99, 265302 (2007) CrossRefADSGoogle Scholar
  11. 11.
    R.J. Arms, F.R. Hama, Phys. Fluids 8, 553 (1965) CrossRefADSGoogle Scholar
  12. 12.
    H. Hasimoto, J. Fluid Mech. 51, 477 (1972) MATHCrossRefADSGoogle Scholar
  13. 13.
    R.H. Kraichnan, D. Montgomery, Rep. Prog. Phys. 43, 547 (1980) CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    V. Lebedev, private communication Google Scholar
  15. 15.
    C. Leith, Phys. Fluids 10, 1409 (1967) CrossRefADSGoogle Scholar
  16. 16.
    C. Leith, Phys. Fluids 11, 1612 (1968) MATHCrossRefADSGoogle Scholar
  17. 17.
    S. Hasselmann, K. Hasselmann, J. Phys. Oceanogr. 15, 1369 (1985) CrossRefADSGoogle Scholar
  18. 18.
    R.S. Iroshnikov, Sov. Phys. Dokl. 30, 126 (1985) MATHADSGoogle Scholar
  19. 19.
    V.E. Zakharov, A.N. Pushkarev, Nonlinear Proc. Geophys. 6(1), 1 (1999) ADSMathSciNetGoogle Scholar
  20. 20.
    C. Connaughton, S. Nazarenko, Phys. Rev. Lett. 92, 044501 (2004) CrossRefADSGoogle Scholar
  21. 21.
    V.S. Lvov, S. Nazarenko, G. Volovik, JETP Lett. 80, 535 (2004) CrossRefGoogle Scholar
  22. 22.
    V.S. Lvov, S.V. Nazarenko, L. Skrbek, J. Low Temp. Phys. 145, 125 (2006) CrossRefADSGoogle Scholar
  23. 23.
    R.J. Donnelly, Quantized Vortices in Helium II. Cambridge Studies in Low Temperature Physics (Cambridge University Press, Cambridge, 1991) Google Scholar
  24. 24.
    V. Zakharov, V. L’vov, G. Falkovich, Kolmogorov Spectra of Turbulence. Nonlinear Dynamics (Springer, Berlin, 1992) MATHGoogle Scholar
  25. 25.
    V.E. Zakharov, E.I. Schulman, Physica D 270 (1982) Google Scholar
  26. 26.
    R. Fjørtoft, Tellus 5, 225 (1953) MathSciNetCrossRefGoogle Scholar
  27. 27.
    L. Smith, V. Yakhot, J. Fluid Mech. 274, 115 (1994) MATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    M.J. Lighthill, Proc. R. Soc. Lond. Ser. A 211, 564 (1952) MATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    E. Kozik, B. Svistunov, Phys. Rev. B 72, 172505 (2005) CrossRefADSGoogle Scholar
  30. 30.
    I. Gradstein, I. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1980) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • G. Boffetta
    • 1
    • 2
  • A. Celani
    • 1
    • 2
    • 3
  • D. Dezzani
    • 1
    • 2
  • J. Laurie
    • 4
  • S. Nazarenko
    • 4
  1. 1.Dipartimento di Fisica Generale and INFNUniversità degli Studi di TorinoTorinoItaly
  2. 2.CNR-ISAC, Sezione di TorinoTorinoItaly
  3. 3.CNRS, Institut PasteurParisFrance
  4. 4.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations