To Wet or Not to Wet: That Is the Question

Article

Abstract

Wetting transitions have been predicted and observed to occur for various combinations of fluids and surfaces. This paper describes the origin of such transitions, for liquid films on solid surfaces, in terms of the gas-surface interaction potentials V(r), which depend on the specific adsorption system. The transitions of light inert gases and H2 molecules on alkali metal surfaces have been explored extensively and are relatively well understood in terms of the least attractive adsorption interactions in nature. Much less thoroughly investigated are wetting transitions of Hg, H2O, heavy inert gases and other molecular films. The basic idea is that nonwetting occurs, for energetic reasons, if the adsorption potential’s well-depth D is smaller than, or comparable to, the well-depth ε of the adsorbate-adsorbate mutual interaction. At the wetting temperature, Tw, the transition to wetting occurs, for entropic reasons, when the liquid’s surface tension is sufficiently small that the free energy cost in forming a thick film is sufficiently compensated by the fluid-surface interaction energy. Guidelines useful for exploring wetting transitions of other systems are analyzed, in terms of generic criteria involving the “simple model”, which yields results in terms of gas-surface interaction parameters and thermodynamic properties of the bulk adsorbate.

Keywords

Adsorption Wetting Films Interactions 

References

  1. 1.
    P.G. de Gennes, Wetting-statics and dynamics. Rev. Mod. Phys. 57, 827 (1985) ADSCrossRefGoogle Scholar
  2. 2.
    D. Bonn, D. Ross, Wetting transitions. Rep. Prog. Phys. 64, 1085–1163 (2001) ADSCrossRefGoogle Scholar
  3. 3.
    B.M. Law, Wetting, adsorption and surface critical phenomena. Prog. Surf. Sci. 66, 159–216 (2001) CrossRefGoogle Scholar
  4. 4.
    J.W. Cahn, Critical-point wetting. J. Chem. Phys. 66, 3667–3672 (1977) ADSCrossRefGoogle Scholar
  5. 5.
    C. Ebner, W.F. Saam, New phase-transition phenomena in thin argon films. Phys. Rev. Lett. 38, 1486–1489 (1977) ADSCrossRefGoogle Scholar
  6. 6.
    J.E. Rutledge, P. Taborek, Prewetting phase-diagram of He-4 on cesium. Phys. Rev. Lett. 69, 937–940 (1992) ADSCrossRefGoogle Scholar
  7. 7.
    J.A. Phillips, D. Ross, P. Taborek, J.E. Rutledge, Superfluid onset and prewetting of He-4 on rubidium. Phys. Rev. B 58, 3361–3370 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    M. Yao, Y. Ohmasa, Wetting phenomena for mercury on sapphire. J. Phys. Condens. Matter 13, 297–319 (2001) ADSCrossRefGoogle Scholar
  9. 9.
    P.J. Nacher, J. Dupont-Roc, Experimental evidence for nonwetting with superfluid helium. Phys. Rev. Lett. 67, 2966–2999 (1991) ADSCrossRefGoogle Scholar
  10. 10.
    E. Cheng, M.W. Cole, W.F. Saam, J. Treiner, Helium prewetting and nonwetting on weak-binding substrates. Phys. Rev. Lett. 67, 1007–1010 (1991) ADSCrossRefGoogle Scholar
  11. 11.
    E. Cheng, M.W. Cole, W.F. Saam, J. Treiner, Phase transitions in multilayer He films. Phys. Rev. B 46, 13967–13981 (1992). Erratum: Phys. Rev. B 47, 14661 (1993) ADSCrossRefGoogle Scholar
  12. 12.
    E. Cheng, G. Mistura, H.C. Lee, M.H.W. Chan, M.W. Cole, C. Carraro, W.F. Saam, F. Toigo, Wetting transitions of liquid hydrogen films. Phys. Rev. Lett. 70, 1854–1857 (1993) ADSCrossRefGoogle Scholar
  13. 13.
    G. Mistura, H.C. Lee, M.H.W. Chan, Hydrogen adsorption on alkali-metal surfaces–wetting, prewetting and triple-point wetting. J. Low Temp. Phys. 96, 221–244 (1994) ADSCrossRefGoogle Scholar
  14. 14.
    D. Ross, P. Taborek, J.E. Rutledge, Wetting behavior of H2 on cesium. Phys. Rev. B 58, R4274 (1998) ADSCrossRefGoogle Scholar
  15. 15.
    M. Poujade, C. Guthmann, E. Rolley, Apparent dewetting due to superfluid flow. Europhys. Lett. 58, 837 (2002) ADSCrossRefGoogle Scholar
  16. 16.
    J. Klier, A.F.G. Wyatt, Nonwetting of liquid He-4 on Rb. Phys. Rev. B 65, 212504 (2002) ADSCrossRefGoogle Scholar
  17. 17.
    G.B. Hess, M.J. Sabatini, M.H.W. Chan, Nonwetting of cesium by neon near its critical point. Phys. Rev. Lett. 78, 1739–1742 (1997) ADSCrossRefGoogle Scholar
  18. 18.
    F. Hensel, M. Yao, Wetting phenomena near the bulk critical point of fluid mercury. Ber. Bunsenges. Phys. Chem. 102, 1798–1802 (1998) Google Scholar
  19. 19.
    F. Hensel, M. Yao, Eur. J. Solid State Inorg. Chem. 34, 861 (1997) Google Scholar
  20. 20.
    F. Hensel, The liquid-vapour phase transition in fluid metals. Philos. Trans. R. Soc. Ser. A 356, 97–115 (1998) ADSCrossRefGoogle Scholar
  21. 21.
    V.F. Kozhevnikov, D.I. Arnold, S.P. Naurzakov, M.E. Fisher, Prewetting transitions in a near-critical metallic vapor. Phys. Rev. Lett. 78, 1735 (1997) ADSCrossRefGoogle Scholar
  22. 22.
    D. Ross, J.A. Phillips, J.E. Rutledge, P. Taborek, Adsorption of He-3 on cesium. J. Low Temp. Phys. 106, 81–92 (1997) ADSCrossRefGoogle Scholar
  23. 23.
    J.E. Rutledge, P. Taborek, Adsorption of He-3 on cesium surfaces. J. Low Temp. Phys. 95, 405–411 (1994) ADSCrossRefGoogle Scholar
  24. 24.
    K.S. Ketola, S. Wang, R.B. Hallock, Anomalous wetting of helium on cesium. Phys. Rev. Lett. 68, 201–204 (1992) ADSCrossRefGoogle Scholar
  25. 25.
    K.S. Ketola, S. Wang, R.B. Hallock, Anomalous wetting of helium on cesium. J. Low Temp. Phys. 89, 601–604 (1992) ADSCrossRefGoogle Scholar
  26. 26.
    S. Herminghaus, J. Vorberg, H. Gau, R. Conradt, D. Reinelt, H. Ulmer, P. Leiderer, M. Przyrembel, Hydrogen and helium films as model systems of wetting. Ann. Phys. 6, 425–447 (1997) CrossRefGoogle Scholar
  27. 27.
    V.F. Kozhevnikov, D.I. Arnold, S.P. Naurzakov, M.E. Fisher, Prewetting phenomena in mercury vapor. Fluid Phase Equilib. 150, 625–632 (1998) CrossRefGoogle Scholar
  28. 28.
    G. Mistura, M.H.W. Chan, Adsorption isotherms of helium on Na and on Rb. Physica B 284, 135–136 (2000) ADSCrossRefGoogle Scholar
  29. 29.
    B. Demolder, N. Bigelow, P.J. Nacher, J. Dupont-Roc, Wetting properties of liquid-helium on rubidium metal. J. Low Temp. Phys. 98, 91–113 (1995) ADSCrossRefGoogle Scholar
  30. 30.
    W.F. Saam, Wetting, capillary condensation and more. J. Low Temp. Phys. (2009) Google Scholar
  31. 31.
    P. Taborek, J. Low Temp. Phys. (2009) Google Scholar
  32. 32.
    F. Ancilotto, S. Hernández, M. Barranco, M. Pi, Wetting behavior of He-4 on planar and nanostructured surfaces from density functional calculations, J. Low Temp. Phys. (2009) Google Scholar
  33. 33.
    E. Cheng, M.W. Cole, J. Dupont-Roc, W.F. Saam, J. Treiner, Novel wetting behavior in quantum films. Rev. Mod. Phys. 65, 557 (1993) ADSCrossRefGoogle Scholar
  34. 34.
    J.A. Phillips, P. Taborek, J.E. Rutledge, Experimental survey of wetting and superfluid onset of 4He on alkali metal surfaces. J. Low Temp. Phys. 113, 829–834 (1998) CrossRefGoogle Scholar
  35. 35.
    T. McMillan, J.E. Rutledge, P. Taborek, Ellipsometry of liquid helium films on gold, cesium and graphite. J. Low Temp. Phys. 138, 995–1011 (2005) ADSCrossRefGoogle Scholar
  36. 36.
    R.B. Hallock, Review of some of the experimental evidence for the novel wetting of helium on alkali metals. J. Low Temp. Phys. 101, 31 (1995) ADSCrossRefGoogle Scholar
  37. 37.
    M. Rauscher, S. Dietrich, Wetting phenomena in nanofluidics. Annu. Rev. Mater. Res. 38, 143–172 (2008) CrossRefGoogle Scholar
  38. 38.
    M. Barranco, R. Guardiola, S. Hernandez, R. Mayol, J. Navarro, M. Pi, Helium droplets: an overview. J. Low Temp. Phys. 142, 1–81 (2006) ADSCrossRefGoogle Scholar
  39. 39.
    L.W. Bruch, M.W. Cole, E. Zaremba, Physical Adsorption: Forces and Phenomena (Dover, New York, 2007), Sect. 4.2 Google Scholar
  40. 40.
    E. Hult, H. Rydberg, B.I. Lundqvist, D.C. Langreth, Unified treatment of asymptotic van der Waals interactions. Phys. Rev. B 59, 4708 (1999) ADSCrossRefGoogle Scholar
  41. 41.
    E. Cheng, M.W. Cole, W.F. Saam, J. Treiner, Wetting temperature shift of helium on a layered substrate. J. Low Temp. Phys. 89, 739–742 (1992) ADSCrossRefGoogle Scholar
  42. 42.
    P. Taborek, J.E. Rutledge, Tuning the wetting transition-prewetting and superfluidity of He-4 on thin cesium substrates. Phys. Rev. Lett. 71, 263–266 (1993) ADSCrossRefGoogle Scholar
  43. 43.
    W. Shi, J.K. Johnson, M.W. Cole, Wetting transitions of hydrogen and deuterium on the surface of alkali metals. Phys. Rev. B 68, 125401 (2003) ADSCrossRefGoogle Scholar
  44. 44.
    S. Curtarolo, G. Stan, M.W. Cole, M.J. Bojan, W.A. Steele, Computer simulations of the wetting properties of neon on heterogeneous surfaces. Phys. Rev. E 59, 4402–4407 (1999) ADSCrossRefGoogle Scholar
  45. 45.
    S. Dietrich, M. Schick, Critical wetting of surfaces in systems with long-range forces. Phys. Rev. B 31, 4718–4720 (1985) ADSCrossRefGoogle Scholar
  46. 46.
    V.B. Shenoy, W.F. Saam, Continuous wetting transitions in Xe adsorbed on NaF and on plated Cs and Rb substrates. Phys. Rev. Lett. 75, 4086–4089 (1995) ADSCrossRefGoogle Scholar
  47. 47.
    S. Rafai, D. Bonn, E. Bertrand, J. Meunier, V.C. Weiss, J.O. Indekeu, Long-range critical wetting: observation of a critical end point. Phys. Rev. Lett. 92, 245701 (2004) ADSCrossRefGoogle Scholar
  48. 48.
    A. Chizmeshya, M.W. Cole, E. Zaremba, Weak binding potentials and wetting transitions. J. Low Temp. Phys. 110, 677–684 (1998) CrossRefGoogle Scholar
  49. 49.
    E. Cheng, M.W. Cole, W.F. Saam, J. Treiner, Wetting transitions of classical liquid films: a nearly universal trend. Phys. Rev. B 48, 18214–18221 (1993) ADSCrossRefGoogle Scholar
  50. 50.
    M.S. Sellers, J.R. Errington, Influence of substrate strength on wetting behavior. J. Phys. Chem. C 112, 12905–12913 (2008) CrossRefGoogle Scholar
  51. 51.
    S. Curtarolo, G. Stan, M.J. Bojan, M.W. Cole, W.A. Steele, Threshold for wetting at the triple point. Phys. Rev. E 61, 1670–1675 (2000) ADSCrossRefGoogle Scholar
  52. 52.
    B.E. Clements, H. Forbert, E. Krotscheck, M. Saarela, He-4 on weakly attractive substrates-structure, stability and wetting behavior. J. Low Temp. Phys. 95, 849–881 (1994) ADSCrossRefGoogle Scholar
  53. 53.
    M. Boninsegni, M.W. Cole, F. Toigo, Helium adsorption on a lithium substrate. Phys. Rev. Lett. 83, 2002–2005 (1999) ADSCrossRefGoogle Scholar
  54. 54.
    M.W. Cole, E.S. Hernández, Unified model of wetting and pore-filling. Phys. Rev. B 75, 205421 (2007) ADSCrossRefGoogle Scholar
  55. 55.
    F. Ancilotto, F. Toigo, Prewetting transitions of Ar and Ne on alkali metal surfaces. Phys. Rev. B 60, 9019–9025 (1999) ADSCrossRefGoogle Scholar
  56. 56.
    J.E. Finn, P.A. Monson, Prewetting at a fluid-solid interface via Monte Carlo simulation. Phys. Rev. A 39, 6402–6406 (1989) ADSCrossRefGoogle Scholar
  57. 57.
    Y. Fan, J.E. Finn, P.A. Monson, Monte Carlo simulation study of adsorption from a liquid-mixture at states near liquid-liquid coexistence. J. Chem. Phys. 99, 8238 (1993) ADSCrossRefGoogle Scholar
  58. 58.
    V. Apaja, E. Krotscheck, A microscopic view of confined quantum liquids, in Microscopic Approaches to Quantum Liquids in Confined Geometries, ed. by E. Krotscheck, J. Navarro (World Scientific, Singapore, 2002), pp. 205–268 Google Scholar
  59. 59.
    F. Ancilotto, S. Curtarolo, F. Toigo, M.W. Cole, Evidence concerning drying behavior of Ne at the Cs surface. Phys. Rev. Lett. 87, 206103 (2001) ADSCrossRefGoogle Scholar
  60. 60.
    M. Barranco, M. Guilleumas, E.S. Hernández, R. Mayol, M. Pi, L. Szybisz, From nonwetting to prewetting: the asymptotic behavior of He-4 drops on alkali substrates. Phys. Rev. B 68, 024515 (2003) ADSCrossRefGoogle Scholar
  61. 61.
    M.J. Bojan, G. Stan, S. Curtarolo, W.A. Steele, M.W. Cole, Wetting transitions of Ne. Phys. Rev. E 59, 864–873 (1999) ADSCrossRefGoogle Scholar
  62. 62.
    R. Garcia, K. Osborne, E. Subashi, Validity of the ‘sharp-kink approximation’ for water and other fluids. J. Phys. Chem. B 112, 8114–8119 (2008) CrossRefGoogle Scholar
  63. 63.
    G. Vidali, G. Ihm, H.Y. Kim, M.W. Cole, Potentials of physical adsorption. Surf. Sci. Rep. 12, 133–182 (1991) CrossRefGoogle Scholar
  64. 64.
    A. Chizmeshya, E. Zaremba, The interaction of rare-gas atoms with metal-surfaces: a scattering-theory approach. Surf. Sci. 268, 432 (1992) ADSCrossRefGoogle Scholar
  65. 65.
    A. Chizmeshya, E. Zaremba, Interaction of rare-gas atoms with metal-surfaces: a pseudopotential approach. Surf. Sci. 220, 443 (1989) ADSCrossRefGoogle Scholar
  66. 66.
    J.B. Anderson, C.A. Traynor, B.M. Boghosian, An exact quantum Monte-Carlo calculation of the helium intermolecular potential. J. Chem. Phys. 99, 345–351 (1993) ADSCrossRefGoogle Scholar
  67. 67.
    J.B. Anderson, An exact quantum Monte Carlo calculation of the helium-helium intermolecular potential, II. J. Chem. Phys. 115, 4546–4548 (2001) ADSCrossRefGoogle Scholar
  68. 68.
    H.L. Anderson (ed.), Physics Vade Mecum (American Inst. Physics, New York, 1981), p. 309 Google Scholar
  69. 69.
    CRC handbook on Chemistry and Physics, version 2008, pp. 112–114 Google Scholar
  70. 70.
    F. Toigo, M.W. Cole, Model adsorption potentials of He and Ne on graphite. Phys. Rev. B 32, 6989–6992 (1985) Erratum: Phys. Rev. B 33, 4330 (1986) ADSCrossRefGoogle Scholar
  71. 71.
    M.J. Stott, E. Zaremba, Quasiatoms—an approach to atoms in nonuniform electronic systems. Phys. Rev. B 22, 1564–1583 (1980) ADSCrossRefGoogle Scholar
  72. 72.
    J.P. Cowin, C.-F. Yu, L. Wharton, Surf. Sci. 161, 221 (1985) ADSCrossRefGoogle Scholar
  73. 73.
    U. Harten, J.P. Toennies, C. Wöll, Molecular-beam translational spectroscopy of physisorption bound-states of molecules on metal-surfaces. I. HD on CU(111) and AU(111) single-crystal surfaces. J. Chem. Phys. 85, 2249 (1986) ADSCrossRefGoogle Scholar
  74. 74.
    A. Šiber, C. Boas, M.W. Cole, C. Wöll, Anomalously low probabilities for rotational excitation in HD/surface scattering: a sensitive and direct test of the potential between closed shell molecules and alkali metals. Chem. Phys. Chem. 7, 1015–1018 (2006) Google Scholar
  75. 75.
    U. Kleinekathöfer, Chem. Phys. Lett. 324, 403–410 (2000) ADSCrossRefGoogle Scholar
  76. 76.
    D.J. Funk, W.H. Breckenridge, J. Simons, G. Chałasinski, J. Chem. Phys. 91, 1114 (1989) ADSCrossRefGoogle Scholar
  77. 77.
    K.T. Tang, J.P. Toennies, C.L. Yiu, Phys. Rev. Lett. 74, 546 (1995) ADSCrossRefGoogle Scholar
  78. 78.
    J.H. Reho, Time resolved spectroscopy of atomic and molecular dopants in and on helium nanodroplets. Ph.D. thesis, Princeton University (2000) Google Scholar
  79. 79.
    J. Pascale, Phys. Rev. A 28, 632 (1983) ADSCrossRefGoogle Scholar
  80. 80.
    P. Jankowski, B. Jeziorski, J. Chem. Phys. 111, 1857 (1999) ADSCrossRefGoogle Scholar
  81. 81.
    A. Bhattacharya, J.B. Anderson, An exact quantum Monte Carlo calculation of the H-He interaction potential. Phys. Rev. A 49, 2441 (1994) ADSCrossRefGoogle Scholar
  82. 82.
    H.-Y. Kim, S.M. Gatica, M.W. Cole, Interaction thresholds for adsorption of quantum gases on planar surfaces, within slit or cylindrical pores and within cylindrical tubes. J. Phys. Chem. A 111, 12439–12446 (2007) CrossRefGoogle Scholar
  83. 83.
    X.-Z. Ni, L.W. Bruch, Hartree and Jastrow approximations for monolayer solids of Ne, D-2, He-4 and He-3. Phys. Rev. B 33, 4584 (1986) ADSCrossRefGoogle Scholar
  84. 84.
    P.A. Whitlock, G.V. Chester, M.H. Kalos, Monte-Carlo study of He-4 in 2 dimensions. Phys. Rev. B 38, 2418–2425 (1988) ADSCrossRefGoogle Scholar
  85. 85.
    E. Vitali, M. Rossi, F. Tramonto, D.E. Galli, L. Reatto, Path-integral ground-state Monte Carlo study of two-dimensional solid He-4. Phys. Rev. B 77, 180505 (2008) ADSCrossRefGoogle Scholar
  86. 86.
    E. Van Cleve, P. Taborek, J.E. Rutledge, Helium adsorption on lithium substrates. J. Low Temp. Phys. 150, 1–11 (2008) ADSCrossRefGoogle Scholar
  87. 87.
    D.M. Ceperley, Path-integrals in the theory of condensed helium. Rev. Mod. Phys. 67, 279–355 (1995) ADSCrossRefGoogle Scholar
  88. 88.
    B. Demolder, F. Raad, J. Dupont-Roc, J. Low Temp. Phys. 101, 337 (1995) ADSCrossRefGoogle Scholar
  89. 89.
    B. Demolder, J. Dupont-Roc, Wetting transitions of liquid helium on oxidized rubidium metal surfaces. J. Low Temp. Phys. 104, 359 (1996) ADSCrossRefGoogle Scholar
  90. 90.
    M.S. Pettersen, W.F. Saam, Prediction of reentrant wetting of He-3-He-4 mixtures on cesium. J. Low Temp. Phys. 90, 159 (1993) ADSCrossRefGoogle Scholar
  91. 91.
    M.S. Pettersen, W.F. Saam, Wetting of 3He-4He mixtures on cesium and other alkali metals. Phys. Rev. B 51, 15369 (1995) ADSCrossRefGoogle Scholar
  92. 92.
    W.F. Saam, M.S. Pettersen, Wetting of 3He-4He mixtures on alkali metal substrates. J. Low Temp. Phys. 101, 355 (1995) ADSCrossRefGoogle Scholar
  93. 93.
    W.F. Saam, M.S. Pettersen, Wetting phenomena in 3He-4He mixtures on weak and superweak substrates. J. Low Temp. Phys. 110, 697 (1998) CrossRefGoogle Scholar
  94. 94.
    K.S. Ketola, R.B. Hallock, J. Low Temp. Phys. 93, 935 (1993) ADSCrossRefGoogle Scholar
  95. 95.
    K.S. Ketola, T.A. Moreau, R.B. Hallock, Novel behavior of 3He-4He mixture films on a cesium coated substrate at low temperatures. J. Low Temp. Phys. 101, 343–348 (1995) ADSCrossRefGoogle Scholar
  96. 96.
    J.E. Rutledge, D. Ross, P. Taborek, J. Low Temp. Phys. 101, 217 (1995) ADSCrossRefGoogle Scholar
  97. 97.
    D. Ross, J.E. Rutledge, P. Taborek, Wetting transitions of binary liquid mixtures at a weakly attractive substrate. Fluid Phase Equilib. 150–151, 599–605 (1998) CrossRefGoogle Scholar
  98. 98.
    K.R. Atkins, The surface tension of liquid helium. Can. J. Phys. 31, 1165–1169 (1953) MATHGoogle Scholar
  99. 99.
    M.S. Pettersen, E. Rolley, C. Guthmann, M. Poujade, Wetting in binary fluid mixtures: recent results in H2/He on cesium. J. Low Temp. Phys. 134, 281 (2004) ADSCrossRefGoogle Scholar
  100. 100.
    C. Ebner, W.F. Saam, Phys. Rev. B 35, 1822 (1987) ADSCrossRefGoogle Scholar
  101. 101.
    G. Mistura, F. Ancilotto, L. Bruschi, F. Toigo, Wetting of argon on CO2. Phys. Rev. Lett. 82, 795–798 (1999) ADSCrossRefGoogle Scholar
  102. 102.
    F. Ancilotto, F. Toigo, First-order wetting transitions of neon on solid CO2 from density functional calculations. J. Chem. Phys. 112, 4768–4772 (2000) ADSCrossRefGoogle Scholar
  103. 103.
    L. Bruschi, E. Paniz, G. Mistura, G. Galilei, Triple-point wetting of Ne on solid CO2. J. Chem. Phys. 114, 1350–1354 (2001) ADSCrossRefGoogle Scholar
  104. 104.
    L.J. Munro, J.K. Johnson, K.D. Jordan, An interatomic potential for mercury dimer. J. Chem. Phys. 114, 5545–5551 (2001) ADSCrossRefGoogle Scholar
  105. 105.
    M.E. Fisher, Private communication Google Scholar
  106. 106.
    W. Adamson, A.P. Gast, Physical Chemistry of Surfaces, 6th edn. (Wiley, New York, 1997) Google Scholar
  107. 107.
    J. Morcos, Surface tension of stress-annealed pyrolitic graphite. J. Chem. Phys. 57, 1801 (1972) ADSCrossRefGoogle Scholar
  108. 108.
    M.E. Schrader, Ultrahigh-vacuum techniques in the measurement of contact angles, 5. LEED study of the effect of structure on thewettability of graphite. J. Phys. Chem. 84, 2774 (1980) CrossRefGoogle Scholar
  109. 109.
    T. Werder, J.H. Walter, R.L. Jaffe, T. Halicioglu, P. Koumoutsakos, On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B 107, 1345 (2003) CrossRefGoogle Scholar
  110. 110.
    A. Pertsin, M. Grunze, Water-graphite interaction and behavior of water near the graphite surface. J. Phys. Chem. B 108, 1357 (2004) CrossRefGoogle Scholar
  111. 111.
    K. Karapetian, K.D. Jordan, in Water in Confining Geometries, ed. by V. Buch, J.P. Devlin (Springer, Berlin, 2003), pp. 139–150 Google Scholar
  112. 112.
    X. Zhao, J.K. Johnson, An effective potential for adsorption of polar molecules on graphite. Mol. Simul. 31, 1–10 (2005) MATHCrossRefGoogle Scholar
  113. 113.
    R.L. Jaffe, P. Gonnet, T. Werder, J.H. Walther, P. Koumoutdakos, Water–carbon interactions 2: calibration of potentials using contact angle data for different interaction models. Mol. Simul. 30, 205 (2004) CrossRefGoogle Scholar
  114. 114.
    S.M. Gatica, X. Zhao, J.K. Johnson, M.W. Cole, Wetting transition of water on graphite and other surfaces. J. Phys. Chem. B 108, 11704–11708 (2004) CrossRefGoogle Scholar
  115. 115.
    X. Zhao, Wetting transition of water on graphite: Monte Carlo simulations. Phys. Rev. B 76, 041402 (2007) ADSCrossRefGoogle Scholar
  116. 116.
    A. Vogler, How water wets biomaterial surfaces, in Water in Biomaterials Surface Science, ed. by M. Morra (Wiley, New York, 2001), pp. 269–290 Google Scholar
  117. 117.
    R. Garcia, Private communication Google Scholar
  118. 118.
    S. Curtarolo, M.W. Cole, R.D. Diehl, Wetting transition behavior of Xe on Cs and Cs/graphite. Phys. Rev. B 70, 115403 (2004) ADSCrossRefGoogle Scholar
  119. 119.
    G.A. Csathy, J.D. Reppy, M.H.W. Chan, Substrate-tuned Boson localization in superfluid 4He films. Phys. Rev. Lett. 91, 235301 (2003) ADSCrossRefGoogle Scholar
  120. 120.
    P.J. Shirron, J.M. Mochel, Phys. Rev. Lett. 67, 1118 (1991) ADSCrossRefGoogle Scholar
  121. 121.
    M.-T. Chen, J.M. Roesler, J.M. Mochel, J. Low Temp. Phys. 89, 125 (1992) ADSCrossRefGoogle Scholar
  122. 122.
    P.W. Adams, V. Pant, Phys. Rev. Lett. 68, 2350 (1992) ADSCrossRefGoogle Scholar
  123. 123.
    H.-Y. Kim, S.M. Gatica, M.W. Cole, Interaction thresholds for adsorption of quantum gases on planar surfaces, within slit or cylindrical pores and within cylindrical tubes. J. Phys. Chem. A 111, 12439–12446 (2007) CrossRefGoogle Scholar
  124. 124.
    M.W. Cole, E.S. Hernández, Unified model of wetting and pore-filling. Phys. Rev. B 75, 205421 (2007) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Physics and AstronomyHoward UniversityWashingtonUSA
  2. 2.Department of PhysicsPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations