Journal of Low Temperature Physics

, Volume 154, Issue 5–6, pp 179–189 | Cite as

Effects of Charging Energy on SINIS Tunnel Junction Thermometry

  • P. J. Koppinen
  • T. Kühn
  • I. J. Maasilta


We have investigated theoretically the effects of the charging energy to the normal metal–insulator–superconductor (NIS) tunnel junction used as a thermometer. We demonstrate by numerical calculations how the charging effects modify NIS thermometry, and how the voltage-to-temperature response and the responsivity |dV/dT| of a current biased thermometer are affected. In addition, we show that the responsivity of the thermometer can be modulated with an additional gate electrode. The maximum responsivity is achieved when the Coulomb blockade is maximal, i.e. with a closed gate.


Coulomb blockade SINIS thermometry Tunnel junction 


74.78.Na 85.35.Gv 85.35.-p 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.M. Rowell, D.C. Tsui, Phys. Rev. B 14, 2456 (1976) CrossRefADSGoogle Scholar
  2. 2.
    M.M. Leivo, J.P. Pekola, Appl. Phys. Lett. 72, 1305 (1998) CrossRefADSGoogle Scholar
  3. 3.
    C.S. Yung, D.R. Schmidt, A.N. Cleland, Appl. Phys. Lett. 81, 31 (2002) CrossRefADSGoogle Scholar
  4. 4.
    M. Meschke, W. Guichard, J.P. Pekola, Nature 444, 187 (2006) CrossRefADSGoogle Scholar
  5. 5.
    J.T. Karvonen, I.J. Maasilta, Phys. Rev. Lett. 99, 145503 (2007) CrossRefADSGoogle Scholar
  6. 6.
    D.R. Schmidt, C.S. Yung, A.N. Cleland, Appl. Phys. Lett. 83, 1002 (2003) CrossRefADSGoogle Scholar
  7. 7.
    H. Grabert, M.H. Devoret, Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (Plenum Press, New York, 1992) Google Scholar
  8. 8.
    O.P. Saira, M. Meschke, F. Giazotto, A.M. Savin, M. Möttönen, J.P. Pekola, Phys. Rev. Lett. 99, 027203 (2007) CrossRefADSGoogle Scholar
  9. 9.
    J.P. Pekola, J.J. Vartiainen, M. Möttönen, O.P. Saira, M. Meschke, D.V. Averin, Nat. Phys. 4, 120 (2008) CrossRefGoogle Scholar
  10. 10.
    A. Kemppinen, M. Meschke, M. Möttönen, D.V. Averin, J.P. Pekola, arXiv:0803.1563 (2008)
  11. 11.
    F.W.J. Hekking, Y.V. Nazarov, Phys. Rev. B 49, 6847 (1994) CrossRefADSGoogle Scholar
  12. 12.
    S. Rajauria, P. Gandit, T. Fournier, F.W.J. Hekking, B. Pannetier, H. Courtois, Phys. Rev. Lett. 100, 207002 (2008) CrossRefADSGoogle Scholar
  13. 13.
    R.C. Dynes, J.P. Garno, G.B. Hertel, T.P. Orlando, Phys. Rev. Lett. 53, 2437 (1984) CrossRefADSGoogle Scholar
  14. 14.
    F. Giazotto, T.T. Heikkilä, A. Luukanen, A.M. Savin, J.P. Pekola, Rev. Mod. Phys. 78, 217 (2006) CrossRefADSGoogle Scholar
  15. 15.
    P.J. Koppinen, I.J. Maasilta, J. Phys., Conf. Ser. (2009, in press). arXiv:0901.2895
  16. 16.
    M. Nahum, T.M. Elles, J.M. Martinis, Appl. Phys. Lett. 65, 3123 (1994) CrossRefADSGoogle Scholar
  17. 17.
    M.M. Leivo, J.P. Pekola, D. Averin, Appl. Phys. Lett. 68, 1996 (1996) CrossRefADSGoogle Scholar
  18. 18.
    M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw–Hill, New York, 1996) Google Scholar
  19. 19.
    J.P. Pekola, T.T. Heikkilä, A.M. Savin, J.T. Flyktman, F. Giazotto, F.W.J. Hekking, Phys. Rev. Lett. 92, 056804 (2004) CrossRefADSGoogle Scholar
  20. 20.
    G.C. O’Neil, D.R. Schmidt, N.A. Miller, J.N. Ullom, K.D. Irwin, A. Williams, G.B. Arnold, S.T. Ruggiero, J. Low. Temp. Phys. 151, 70 (2008) CrossRefADSGoogle Scholar
  21. 21.
    J.J. Toppari, T. Kühn, A.P. Halvari, G.S. Paraoanu, J. Phys., Conf. Ser. (2009, in press). arXiv:0806.3179

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Nanoscience Center, Department of PhysicsUniversity of JyväskyläJyväskyläFinland

Personalised recommendations