Journal of Low Temperature Physics

, Volume 159, Issue 3–4, pp 462–475 | Cite as

Towards Analytical Approaches to the Dynamical-Cluster Approximation

Article
  • 26 Downloads

Abstract

I introduce several simplified schemes for the approximation of the self-consistency condition of the dynamical cluster approximation. The applicability of the schemes is tested numerically using the fluctuation-exchange approximation as a cluster solver for the Hubbard model. Thermodynamic properties are found to be practically indistinguishable from those computed using the full self-consistent scheme in all cases where the non-interacting partial density of states is replaced by simplified analytic forms with matching 1st and 2nd moments. Green functions are also compared and found to be in close agreement, and the density of states computed using Padé approximant analytic continuation shows that dynamical properties can also be approximated effectively. Extensions to two-particle properties and multiple bands are discussed. Simplified approaches to the dynamical cluster approximation should lead to new analytic solutions of the Hubbard and other models.

Theories and models of many-electron systems Strongly correlated electron systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989) CrossRefADSGoogle Scholar
  2. 2.
    A. Georges, G. Kotliar, W. Krauth, M. Rozenburg, Rev. Mod. Phys. 68, 13 (1996) CrossRefADSGoogle Scholar
  3. 3.
    M.J. Rozenberg, X.Y. Zhang, G. Kotliar, Phys. Rev. B 49, 10181 (1994) CrossRefADSGoogle Scholar
  4. 4.
    M.H. Hettler, A.N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke, H.R. Krishnamurthy, Phys. Rev. B 58, R7475 (1998) CrossRefADSGoogle Scholar
  5. 5.
    T. Maier, M. Jarrell, T. Pruschke, M.H. Hettler, Rev. Mod. Phys. 77, 1027 (2005) CrossRefADSGoogle Scholar
  6. 6.
    P. Kent, M. Jarrell, T. Maier, T. Pruschke, Phys. Rev. B 72, 060411(R) (2005) ADSGoogle Scholar
  7. 7.
    J. Hubbard, Proc. R. Soc. 276, 238 (1963) CrossRefADSGoogle Scholar
  8. 8.
    E.H. Lieb, Wu, Phys. Rev. Lett. 20, 1445 (1968) CrossRefADSGoogle Scholar
  9. 9.
    P. Lambin, J.P. Vigneron, Phys. Rev. B 29, 3430 (1984) CrossRefADSGoogle Scholar
  10. 10.
    N.E. Bickers, D.J. Scalapino, Ann. Phys. 193, 206 (1989) CrossRefADSGoogle Scholar
  11. 11.
    K. Aryanapour, M.H. Hettler, M. Jarrell, Phys. Rev. B 65, 153102 (2002) CrossRefADSGoogle Scholar
  12. 12.
    H.J. Vidberg, J.W. Serene, J. Low Temp. Phys. 29, 179 (1977) CrossRefADSGoogle Scholar
  13. 13.
    M. Jarrell, T. Maier, C. Huscroft, S. Moukouri, Phys. Rev. B 64, 195130 (2001) CrossRefADSGoogle Scholar
  14. 14.
    A. Georges, G. Kotliar, W. Krauth, Z. Phys. B 92, 313 (1993) CrossRefADSGoogle Scholar
  15. 15.
    E. Gull, O. Parcollet, P. Werner, A.J. Millis, Phys. Rev. B 80, 245102 (2009) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Physics and AstronomyThe Open UniversityMilton KeynesUK

Personalised recommendations