Advertisement

Journal of Low Temperature Physics

, Volume 158, Issue 5–6, pp 854–866 | Cite as

Some Mechanisms of “Spontaneous” Polarization of Superfluid He-4

  • Maksim D. TomchenkoEmail author
Article

Abstract

Previously, a quantum “tidal” mechanism of polarization of the atoms of He-II was proposed, according to which, as a result of interatomic interaction, each atom of He-II acquires small fluctuating dipole and multipole moments, oriented chaotically on the average. In this work, we show that, in the presence of a temperature or density gradient in He-II, the originally chaotically oriented tidal dipole moments of the atoms become partially ordered, which results in volume polarization of He-II. It is found that the gravitational field of the Earth induces electric induction Δφ∼10−7 V in He-II (for vessel dimensions of the order of 10 cm). We study also the connection of polarization and acceleration, and discuss a possible nature of the electric signal Δφk B ΔT/2e observed by A.S. Rybalko in experiments with second sound.

Helium-4 Electrical activity Dipole moment Acceleration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.S. Rybalko, Fiz. Nizk. Temp. 30, 1321 (2004). Low Temp. Phys. 30, 994 (2004) Google Scholar
  2. 2.
    A.S. Rybalko, S.P. Rubets, Fiz. Nizk. Temp. 31, 820 (2005). Low Temp. Phys. 31, 623 (2005) Google Scholar
  3. 3.
    A. Rybalko, S. Rubets, E. Rudavskii, V. Tikhiy, S. Tarapov, R. Golovashchenko, V. Derkach, Phys. Rev. B 76, 140503 (2007) CrossRefADSGoogle Scholar
  4. 4.
    A.S. Rybalko, S.P. Rubets, E.Ya. Rudavskii et al., arXiv:0807.4810 [cond-mat] (2008)
  5. 5.
    A.M. Kosevich, Fiz. Nizk. Temp. 31, 50, 1100 (2005). Low Temp. Phys. 31, 37, 920 (2005) Google Scholar
  6. 6.
    L.A. Melnikovsky, J. Low Temp. Phys. 148, 559 (2007) CrossRefADSGoogle Scholar
  7. 7.
    E.A. Pashitsky, S.M. Ryabchenko, Fiz. Nizk. Temp. 33, 12 (2007). Low Temp. Phys. 33, 8 (2007) Google Scholar
  8. 8.
    V.M. Loktev, M.D. Tomchenko, Fiz. Nizk. Temp. 34, 337 (2008). Low Temp. Phys. 34, 262 (2008) Google Scholar
  9. 9.
    K.V. Grigorishin, B.I. Lev, Ukr. Fiz. Z., Ukr. J. Phys. 53, 645 (2008) Google Scholar
  10. 10.
    W. Byers Brown, D.M. Whisnant, Mol. Phys. 25, 1385 (1973) CrossRefADSGoogle Scholar
  11. 11.
    D.M. Whisnant, W. Byers Brown, Mol. Phys. 26, 1105 (1973) CrossRefADSGoogle Scholar
  12. 12.
    G.E. Volovik, Pis’ma Zh. Eksp. Teor. Fiz. 39, 169 (1984). JETP Lett. 39, 200 (1984) Google Scholar
  13. 13.
    V.M. Loktev, M.D. Tomchenko, arXiv:0903.2153 [cond-mat] (2009)
  14. 14.
    V.D. Natsik, Fiz. Nizk. Temp. 31, 1201 (2005). Low Temp. Phys. 31, 915 (2005) Google Scholar
  15. 15.
    V.D. Natsik, Fiz. Nizk. Temp. 34, 625 (2008). Low Temp. Phys. 34, 493 (2008) Google Scholar
  16. 16.
    S. Putterman, Superfluidity Hydrodynamics (North-Holland, Amsterdam, 1974) Google Scholar
  17. 17.
    I.M. Khalatnikov, An Introduction to the Theory of Superfluidity (Perseus, Cambridge, 2000) Google Scholar
  18. 18.
    E. Feenberg, Ann. Phys. 70, 133 (1972) CrossRefADSGoogle Scholar
  19. 19.
    E.C. Svensson, V.F. Sears, A.D.B. Woods et al., Phys. Rev. B 21, 3638 (1980) CrossRefADSGoogle Scholar
  20. 20.
    G.E. Volovik, private communication Google Scholar
  21. 21.
    R.P. Feynman, M. Cohen, Phys. Rev. 102, 1189 (1956) zbMATHCrossRefADSGoogle Scholar
  22. 22.
    R.P. Feynman, Statistical Mechanics (Addison-Wesley, Reading, 1972) Google Scholar
  23. 23.
    A.S. Rybalko, private communication Google Scholar
  24. 24.
    A.R. Jansen, R.A. Aziz, J. Chem. Phys. 107, 914 (1997) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Bogoliubov Institute for Theoretical Physics of the NAS of UkraineKyivUkraine

Personalised recommendations