Advertisement

Bragg Spectroscopy of Strongly Correlated Bosons in Optical Lattices

  • D. Clément
  • N. Fabbri
  • L. Fallani
  • C. Fort
  • M. Inguscio
Article

Abstract

Using inelastic scattering of light (Bragg spectroscopy), we study the low-energy excitations of strongly correlated phases of ultracold bosons on the cross-over from correlated 1D superfluids to Mott insulators. As it is commonly performed in solid-state physics, the use of such a probe allows us to extract important information about the atomic many-body state. In particular we show that we can extract information about the dynamical structure factor S(q,ω) and about the one-particle spectral function A(q,ω) from the Bragg spectra. This technique could be extended to study more exotic correlated phases of ultracold atoms.

Keywords

Ultracold atoms Correlated phases Bragg spectroscopy Excitations Spectral functions 

PACS

37.10.Jk 67.85.Hj 67.85.De 

References

  1. 1.
    G.D. Mahan, Many-body Physics (Plenum, New York, 1981) Google Scholar
  2. 2.
    A. Damascelli et al., Rev. Mod. Phys. 75, 473 (2003) CrossRefADSGoogle Scholar
  3. 3.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976) Google Scholar
  4. 4.
    P. Nozieres, D. Pines, The Theory of Quantum Liquids (Addison-Wesley, Reading, 1994) Google Scholar
  5. 5.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008) CrossRefADSGoogle Scholar
  6. 6.
    D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998) CrossRefADSGoogle Scholar
  7. 7.
    G.K. Campbell et al., Science 313, 649–652 (2006) CrossRefADSGoogle Scholar
  8. 8.
    J.T. Stewart, J.P. Gaebler, D.S. Jin, Nature 454, 744 (2008) CrossRefADSGoogle Scholar
  9. 9.
    T.-L. Dao et al., Phys. Rev. Lett. 98, 240402 (2007) CrossRefADSGoogle Scholar
  10. 10.
    S.B. Papp et al., Phys. Rev. Lett. 101, 135301 (2008) CrossRefADSGoogle Scholar
  11. 11.
    G. Veeravalli, E. Kuhnle, P. Dyke, C.J. Vale, Phys. Rev. Lett. 101, 250403 (2008) CrossRefADSGoogle Scholar
  12. 12.
    D. Clément et al., Phys. Rev. Lett. 102, 155301 (2009) CrossRefADSGoogle Scholar
  13. 13.
    D. Clément et al., New J. Phys. 11, 103030 (2009) CrossRefGoogle Scholar
  14. 14.
    T. Stöferle et al., Phys. Rev. Lett. 92, 130403 (2004) CrossRefADSGoogle Scholar
  15. 15.
    M. Greiner et al., Phys. Rev. Lett. 87, 160405 (2001) CrossRefADSGoogle Scholar
  16. 16.
    N. Fabbri et al., Phys. Rev. A 79, 043623 (2009) CrossRefADSGoogle Scholar
  17. 17.
    S. Richard et al., Phys. Rev. Lett. 91, 010405 (2003) CrossRefADSGoogle Scholar
  18. 18.
    M. Rigol et al., Phys. Rev. A 79, 053605 (2009) CrossRefADSGoogle Scholar
  19. 19.
    D. van Oosten et al., Phys. Rev. A 71, 021601(R) (2005) ADSGoogle Scholar
  20. 20.
    A.M. Rey et al., Phys. Rev. A 72, 023407 (2005) CrossRefADSGoogle Scholar
  21. 21.
    G. Pupillo et al., Phys. Rev. A 74, 013601 (2006) CrossRefADSGoogle Scholar
  22. 22.
    S.D. Huber et al., Phys. Rev. B 75, 085106 (2007) CrossRefADSGoogle Scholar
  23. 23.
    C. Menotti, N. Trivedi, Phys. Rev. B 77, 235120 (2008) CrossRefADSGoogle Scholar
  24. 24.
    G.G. Batrouni et al., Phys. Rev. Lett. 89, 117203 (2002) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • D. Clément
    • 1
  • N. Fabbri
    • 1
  • L. Fallani
    • 1
  • C. Fort
    • 1
  • M. Inguscio
    • 1
  1. 1.LENS—University of Florence and CNR-INFMSesto FiorentinoItaly

Personalised recommendations