Observation of Single Compton-Electron Tracks in Superfluid Helium-4 and Trace Detection of Metastable Helium Molecules by Laser-Induced-Fluorescence Imaging

  • J. D. Wright
  • W. G. Rellergert
  • S. B. Cahn
  • A. Curioni
  • J. A. Nikkel
  • D. N. McKinsey
Article
  • 69 Downloads

Abstract

We use laser-induced fluorescence enhanced by a cycling transition to image metastable helium molecules in liquid helium-4. We demonstrate that the method achieves sufficient sensitivity to image the trail of helium molecules that forms along the track of a single high-energy electron created by Compton scattering of a 511 keV gamma ray in liquid helium. The experiments show that a liquid helium detector with optical readout can function as an electron-tracking Compton camera when combined with conventional gamma-ray detectors. The demonstrated sensitivity for imaging helium molecules could also find application in the spectroscopy and imaging of neutrons, detection of electronic and nuclear recoil events, and investigation of superfluid or normal-fluid flow in liquid helium using the molecules as passive tracer particles.

Compton-electron tracking Compton scattering Helium excimer Molecule Dimer Laser-induced fluorescence Superfluid Liquid helium Gamma ray Compton camera Compton telescope Compton imager Fast neutron Neutron imaging Neutron spectroscopy Neutron detector High-energy particle detector Nuclear recoil Electronic recoil Detection Laser Imaging Cycling transition Repumping EUV scintillation Single photon 

PACS

67.25.D- 29.40.Gx 67.25.dk 

References

  1. 1.
    D.N. McKinsey, W.H. Lippincott, J.A. Nikkel, W.G. Rellergert, Phys. Rev. Lett. 95, 111101 (2005) CrossRefADSGoogle Scholar
  2. 2.
    D.N. McKinrsey, Detection of magnetically trapped neutrons: liquid helium as a scintillator. Ph.D. thesis, Harvard University (2002) Google Scholar
  3. 3.
    D.N. McKinsey et al., Phys. Rev. A 67(6), 062716 (2003) CrossRefADSGoogle Scholar
  4. 4.
    A. Tenner, Nucl. Instrum. Methods 22, 1 (1963) CrossRefADSGoogle Scholar
  5. 5.
    D.N. McKinsey et al., Phys. Rev. A 59(1), 200 (1999) CrossRefADSGoogle Scholar
  6. 6.
    J.S. Adams et al., J. Low Temp. Phys. 113(5), 1121 (1998) CrossRefGoogle Scholar
  7. 7.
    M. Takahashi et al., Nucl. Instrum. Methods A 370, 138 (1996) CrossRefGoogle Scholar
  8. 8.
    P.R. Huffman et al., Nature 403(6765), 62 (2000) CrossRefADSGoogle Scholar
  9. 9.
    R. Golub, S.K. Lamoreaux, Phys. Rep. 237(1), 1 (1994) CrossRefADSGoogle Scholar
  10. 10.
    J.M. Doyle, S.K. Lamoreaux, Europhys. Lett. (EPL) 26(4), 253 (1994) CrossRefADSGoogle Scholar
  11. 11.
    D.I. Bradley et al., Phys. Rev. Lett. 75(10), 1887 (1995) CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    D.N. McKinsey, J.M. Doyle, J. Low Temp. Phys. 118(3), 153 (2000) CrossRefGoogle Scholar
  13. 13.
    W.G. Rellergert et al., Phys. Rev. Lett. 100(2), 025301 (2008) CrossRefADSGoogle Scholar
  14. 14.
    W. Rellergert, Detecting and imaging He2 molecules in superfluid helium by laser-induced fluorescence. Ph.D. thesis, Yale University (2008) Google Scholar
  15. 15.
    V.B. Eltsov et al., J. Low Temp. Phys. 110(1–2), 219 (1998) CrossRefGoogle Scholar
  16. 16.
    J.S. Adams, Energy deposition by electrons in superfluid helium. Ph.D. thesis, Brown University (2001) Google Scholar
  17. 17.
    R.W. Todd, J.M. Nightingale, D.B. Everett, Nature 251, 132 (1974) CrossRefADSGoogle Scholar
  18. 18.
    R. Orito et al., Nucl. Instrum. Methods A 525(1–2), 107 (2004) CrossRefADSGoogle Scholar
  19. 19.
    A.C. Zoglauer, First light for the next generation of Compton and pair telescopes. Ph.D. thesis, Technische Universität München (2005) Google Scholar
  20. 20.
    K. Ieki et al., Nucl. Instrum. Methods A 262, 323–328 (1987) CrossRefADSGoogle Scholar
  21. 21.
    R.T. Grannan, R. Koga, W.A. Millard, A.M. Preszler, G.M. Simnett, R.S. White, Nucl. Instrum. Methods 103, 99–108 (1972) CrossRefADSGoogle Scholar
  22. 22.
    W. Guo, J.D. Wright, S.B. Cahn, J.A. Nikkel, D.N. McKinsey, Phys. Rev. Lett. 102(23), 235301 (2009) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • J. D. Wright
    • 1
  • W. G. Rellergert
    • 2
  • S. B. Cahn
    • 1
  • A. Curioni
    • 1
  • J. A. Nikkel
    • 1
  • D. N. McKinsey
    • 1
  1. 1.Physics DepartmentYale UniversityNew HavenUSA
  2. 2.Physics DepartmentUniversity of California—Los AngelesLos AngelesUSA

Personalised recommendations