Studying the Normal-Fluid Flow in Helium-II Using Metastable Helium Molecules

  • W. Guo
  • J. D. Wright
  • S. B. Cahn
  • J. A. Nikkel
  • D. N. McKinsey
Article

Abstract

We demonstrate that metastable helium molecules can be used as tracers to visualize the flow of the normal fluid in superfluid 4He using a laser-induced-fluorescence technique. The flow pattern of a normal-fluid jet impinging on the center of a copper disc is imaged. A ring-shaped circulation structure of the normal fluid is observed as the jet passes across the disc surface. The fluorescence signal for the molecules trapped in the circulation structure is measured as a function of time after we turn off the molecule source. The radiative lifetime and density of the molecules can be determined by fitting the measured data using a simple analytic model. We also discuss a proposed experiment on using a previously developed molecule tagging-imaging technique to visualize the normal-fluid velocity profile during the transition of quantum turbulence in a thermal counterflow channel.

Keywords

Visualization Helium molecule Jet impingement Quantum turbulence 

PACS

47.27.-i 29.40.Gx 67.25.dk 67.25.D- 

References

  1. 1.
    T. Zhang, S.W. Van Sciver, J. Low Temp. Phys. 138, 865 (2005) CrossRefADSGoogle Scholar
  2. 2.
    T. Zhang, S.W. Van Sciver, Nat. Phys. 1, 36 (2005) CrossRefGoogle Scholar
  3. 3.
    G.P. Bewley et al., Nature 441, 588 (2006) CrossRefADSGoogle Scholar
  4. 4.
    M.S. Paoletti et al., Phys. Rev. Lett. 101, 154501 (2008) CrossRefADSGoogle Scholar
  5. 5.
    D. Kivotides, Phys. Rev. B 78, 224501 (2008) CrossRefADSGoogle Scholar
  6. 6.
    M.E. Hayden et al., Phys. Rev. Lett. 93, 105302 (2004) CrossRefADSGoogle Scholar
  7. 7.
    D.N. McKinsey et al., Phys. Rev. Lett. 95, 111101 (2005) CrossRefADSGoogle Scholar
  8. 8.
    W.G. Rellergert et al., Phys. Rev. Lett. 100, 025301 (2008) CrossRefADSGoogle Scholar
  9. 9.
    W.F. Vinen, in Low Temperature Physics. AIP Conf. Proc., vol. 850 (AIP, New York, 2006), p. 169 Google Scholar
  10. 10.
    A.V. Benderskii et al., J. Chem. Phys. 117, 1201 (2002) CrossRefADSGoogle Scholar
  11. 11.
    P.V.E. McClintock et al., Cryogenics 13, 556 (1973) CrossRefGoogle Scholar
  12. 12.
    R. Mehrotra et al., J. Low Temp. Phys. 36, 47 (1979) CrossRefADSGoogle Scholar
  13. 13.
    C.F. Chabalowski et al., J. Chem. Phys. 90, 2504 (1989) CrossRefADSGoogle Scholar
  14. 14.
    D.N. McKinsey et al., Phys. Rev. A 59, 200 (1999) CrossRefADSGoogle Scholar
  15. 15.
    W.G. Rellergert, Ph.D. thesis, Yale University, 2008 Google Scholar
  16. 16.
    M.B. Glauert, J. Fluid Mech. 1, 625 (1956) CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    T.T. Fujita, SMRP Res. Paper 210, (1985), 122 pp. Google Scholar
  18. 18.
    W. Guo et al., Phys. Rev. Lett. 102, 235301 (2009) CrossRefADSGoogle Scholar
  19. 19.
    J.W. Keto et al., Phys. Rev. A 10, 887 (1974) CrossRefADSGoogle Scholar
  20. 20.
    J.T. Tough, in Progress in Low Temperature Physics. Superfluid Turbulence, vol. VIII (North-Holland, Amsterdam, 1982) Google Scholar
  21. 21.
    D.J. Melotte, C.F. Barenghi, Phys. Rev. Lett. 80, 4181 (1998) CrossRefADSGoogle Scholar
  22. 22.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edn. (Butterworth-Heinemann, New York, 1987) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • W. Guo
    • 1
  • J. D. Wright
    • 1
  • S. B. Cahn
    • 1
  • J. A. Nikkel
    • 1
  • D. N. McKinsey
    • 1
  1. 1.Physics DepartmentYale UniversityNew HavenUSA

Personalised recommendations