Journal of Low Temperature Physics

, Volume 158, Issue 3–4, pp 509–514 | Cite as

NMR Studies of Quantum Rotors Confined in Zeolite



We report the results of NMR studies of methane trapped in zeolite at low temperatures. Samples were prepared to contain 1.0±0.2 molecules per α-sodalite cage of zeolite-13X. The NMR spin-spin and spin-lattice relaxation times were measured for 4<T<95 K to determine the rotational dynamics of the molecules and the dependence on the concentration of the A, T and E-molecular species. The results are discussed relative to recent Monte Carlo calculations that show that the molecules are localized but free to tumble in the large α-cages at low temperatures. At higher temperatures there is an effective melting of the translational degrees of freedom for the lattice formed by the centers of the supercages. A sharp definitive jump in the NMR spin-spin relaxation is seen at this “melting” transition.


Quantum rotors Magnetic resonance Methane Zeolite 


31.70.Ks 66.30.Ma 76.60.-k 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zeolite-13X, Union Carbide Corporation, Plainfield, NJ Google Scholar
  2. 2.
    F. Nouar, J. Eckert, J.F. Eubank, P. Forster, M. Eddaoudi, J. Am. Chem. Soc. 131(8), 2846 (2009) CrossRefGoogle Scholar
  3. 3.
    K. Tomita, Phys. Rev. 89, 429 (1953) CrossRefADSGoogle Scholar
  4. 4.
    S. Yashonath, J.M. Thomas, K. Nowak, A.K. Cheetham, Nature 331, 601 (1988) CrossRefADSGoogle Scholar
  5. 5.
    A. Abragam, Principles of Nuclear Magnetism (Clarendon, Oxford, 1961) Google Scholar
  6. 6.
    L. Pauling, Phys. Rev. 36, 430 (1930) CrossRefADSGoogle Scholar
  7. 7.
    G.A. de Wit, M. Bloom, Can. J. Phys. 47, 1196 (1969) Google Scholar
  8. 8.
    K. Clusius, Z. Phys. Chem. B (Leipzig) 3, 41 (1929) Google Scholar
  9. 9.
    J.Z. Larese, R.J. Rollefson, Phys. Rev. 31, 3048 (1985) ADSCrossRefGoogle Scholar
  10. 10.
    M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill, New York, 1964) MATHGoogle Scholar
  11. 11.
    S. Buchman, D. Candela, W.T. Vetterling, R.V. Pound, Phys. Rev. B 26, 1459 (1982) CrossRefADSGoogle Scholar
  12. 12.
    R.P. Humes, M.V. Smalley, T. Rayment, R.K. Thomas, Can. J. Chem. 66, 557 (1988) CrossRefGoogle Scholar
  13. 13.
    G. Bomchil, A. Huller, T. Rayment, S.J. Roser, M.V. Smalley, R.K. Tomas, J.W. White, Philos. Trans. R. Soc. Lond. B 290, 537 (1980) CrossRefADSGoogle Scholar
  14. 14.
    R.A. Guyer, R.C. Richardson, L.I. Zane, Rev. Mod. Phys. 43(4), 532 (1971) CrossRefADSGoogle Scholar
  15. 15.
    H.J.F. Stroud, E. Richards, P. Limcharden, N.G. Parsonage, J. Chem. Soc. Faraday Trans. I 72, 942 (1976) CrossRefGoogle Scholar
  16. 16.
    A.V.A. Kumar, S. Yashonath, M. Sluiter, Y. Kawazoe, Phys. Rev. E 65, 011203 (2001) CrossRefADSGoogle Scholar
  17. 17.
    R. Chitra, A.V.A. Kumar, S. Yashonath, J. Chem. Phys. 114(1), 11 (2001) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of FloridaGainesvilleUSA

Personalised recommendations