Journal of Low Temperature Physics

, Volume 153, Issue 5–6, pp 140–161 | Cite as

Gradual Eddy-Wave Crossover in Superfluid Turbulence

  • Victor S. L’vov
  • Sergey V. Nazarenko
  • Oleksii Rudenko


We revise the theory of superfluid turbulence near the absolute zero of temperature and suggest a differential approximation model for the energy fluxes in the k-space, ε HD(k) and ε KW(k), carried, respectively, by the collective hydrodynamic (HD) motions of quantized vortex lines and by their individual uncorrelated motions known as Kelvin waves (KW). The model predicts energy spectra of the HD and the KW components of the system, ℰHD(k) and ℰKW(k), which experience a smooth crossover between different regimes of motion over a finite range of scales. For an experimentally relevant range of Λ≡ln (/a) ( is the mean intervortex separation and a is the vortex core radius) between 10 and 15 the total energy flux ε=ε HD(k)+ε KW(k) and the total energy spectrum ℰ(k)=ℰHD(k)+ℰKW(k) are dominated by the HD motions for k<2/. In this region ℰ(k) follows the HD spectrum with constant energy flux εε HD=const.: ℰ(k) k −5/3 for smaller k and tends to equipartition of the HD energy ℰ(k) k 2 for larger k. This bottleneck accumulation of the energy spectrum is milder than the one predicted before in (L’vov et al. in Phys. Rev. B 76:024520, 2007) based on a model with sharp HD-KW transition. For Λ=15, it results in a prediction for the effective viscosity ν  ′≃0.004κ (κ is the circulation quantum) which is in a reasonable agreement with its experimental value in 4He low-temperature experiment ≈0.003κ (Walmsley et al. in Phys. Rev. Lett. 99:265302, 2007). For k>2/, the energy spectrum is dominated by the KW component: almost flux-less KW component close to the thermodynamic equilibrium, ℰ≈ℰKW≈const at smaller k and the KW cascade spectrum ℰ(k)→ℰKW(k) k −7/5 at larger k.


Quantum turbulence Liquid helium Kelvin waves Eddy-wave crossover Bottleneck 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.S. L’vov, S.V. Nazarenko, O. Rudenko, Phys. Rev. B 76, 024520 (2007) CrossRefADSGoogle Scholar
  2. 2.
    P.M. Walmsley, A.I. Golov, H.E. Hall, A.A. Levchenko, W.F. Vinen, Phys. Rev. Lett. 99, 265302 (2007) CrossRefADSGoogle Scholar
  3. 3.
    W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128, 167 (2002) CrossRefGoogle Scholar
  4. 4.
    W.F. Vinen, Phil. Trans. R. Soc. A 366(1877), 2925–2933 (2008). doi: 10.1098/rsta.2008.0084 CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    M. Tsubota, arXiv:0806.2737 (2008)
  6. 6.
    V.B. Eltsov, R. de Graaf, R. Hanninen, M. Krusius, R.E. Solntsev, V.S. L’vov, A.I. Golov, P.M. Walmsley, in Progress in Low Temperature Physics, vol. 16, ed. by M. Tsubota (Elsevier, Amsterdam, 2008), in press; also arXiv:0803.3225 Google Scholar
  7. 7.
    S.N. Fisher, A.J. Hale, A.M. Guénault, G.R. Pickett, Phys. Rev. Lett. 86, 244 (2001) CrossRefADSGoogle Scholar
  8. 8.
    T. Araki, M. Tsubota, S.K. Nemirovskii, Phys. Rev. Lett. 89, 145301 (2002) CrossRefADSGoogle Scholar
  9. 9.
    S.R. Stalp, J.J. Niemela, W.F. Vinen, R.J. Donnelly, Phys. Fluids 14, 1377 (2002) CrossRefADSGoogle Scholar
  10. 10.
    R. Hänninen, R. Blaauwgeers, V.B. Eltsov, A.P. Finne, M. Krusius, E.V. Thuneberg, G.E. Volovik, Phys. Rev. Lett. 90, 225301 (2003) CrossRefADSGoogle Scholar
  11. 11.
    A.P. Finne, T. Araki, R. Blaauwgeers, V.B. Eltsov, N.B. Kopnin, M. Krusius, L. Skrbek, M. Tsubota, G.E. Volovik, Nature 424, 1022 (2003) CrossRefADSGoogle Scholar
  12. 12.
    W.F. Vinen, M. Tsubota, A. Mitani, Phys. Rev. Lett. 91, 135301 (2003) CrossRefADSGoogle Scholar
  13. 13.
    D.I. Bradley, D.O. Clubb, S.N. Fisher, A.M. Guénault, R.P. Haley, C.J. Matthews, G.R. Pickett, V. Tsepelin, K. Zaki, Phys. Rev. Lett. 95, 035302 (2005) CrossRefADSGoogle Scholar
  14. 14.
    V.B. Eltsov, A.P. Finne, R. Hänninen, J. Kopu, M. Krusius, M. Tsubota, E.V. Thuneberg, Phys. Rev. Lett. 96, 215302 (2006) CrossRefADSGoogle Scholar
  15. 15.
    D.I. Bradley, D.O. Clubb, S.N. Fisher, A.M. Guénault, R.P. Haley, C.J. Matthews, G.R. Pickett, V. Tsepelin, K. Zaki, Phys. Rev. Lett. 96, 035301 (2006) CrossRefADSGoogle Scholar
  16. 16.
    V.B. Eltsov, A.I. Golov, R. de Graaf, R. Hänninen, M. Krusius, V.S. L’vov, R.E. Solntsev, Phys. Rev. Lett. 99, 265301 (2007) CrossRefADSGoogle Scholar
  17. 17.
    P.-E. Roche, C.F. Barenghi, Euro Phys. Lett. 81, 36002 (2008) CrossRefADSGoogle Scholar
  18. 18.
    R.J. Donnelly, Quantized Vortices in He II (Cambridge University Press, Cambridge, 1991) Google Scholar
  19. 19.
    C.F. Barenghi et al. (eds.), Quantized Vortex Dynamics and Superfluid Turbulence. Lecture Notes in Physics, vol. 571 (Springer, Berlin, 2001) zbMATHGoogle Scholar
  20. 20.
    E.V. Kozik, B.V. Svistunov, Phys. Rev. B 77, 060502(R) (2008) CrossRefADSGoogle Scholar
  21. 21.
    E.V. Kozik, B.V. Svistunov, Phys. Rev. Lett. 92, 035301 (2004) CrossRefADSGoogle Scholar
  22. 22.
    L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics: Fluid Mechanics (Pergamon, New York, 1987) zbMATHGoogle Scholar
  23. 23.
    U. Frish, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, 1995) Google Scholar
  24. 24.
    C. Leith, Phys. Fluids 10, 1409 (1967) CrossRefADSGoogle Scholar
  25. 25.
    C. Connaughton, S. Nazarenko, Phys. Rev. Lett. 92, 044501 (2004) CrossRefADSGoogle Scholar
  26. 26.
    S. Nazarenko, JETP Lett. 84, 585 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Victor S. L’vov
    • 1
    • 2
  • Sergey V. Nazarenko
    • 3
  • Oleksii Rudenko
    • 1
  1. 1.Department of Chemical PhysicsThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.Department of Theoretical PhysicsInstitute for Magnetism, Ukraine National Acad. of Sci.KievUkraine
  3. 3.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations