Journal of Low Temperature Physics

, Volume 153, Issue 5–6, pp 294–303 | Cite as

Enhancement of Sudden Death of Entanglement for Driven Qubits

  • Jian Li
  • K. Chalapat
  • G. S. Paraoanu


We study the recently discovered phenomena of sudden death of entanglement for a system of two qubits, each of them independently longitudinally damped by a reservoir and subjected to a continuous driving. We show that driving produces, in the interaction picture, an effective bath that has elements amounting to various extra sources of noise (transverse, thermal squeezed, thermal longitudinal). As a result, the time of sudden death decreases due to driving, which we verify as well by direct numerical calculation. We suggest that this phenomenon can be studied systematically using superconducting qubits driven by microwave fields.


Entanglement Decoherence Sudden death 


03.65.Ud 03.65.Yz 85.25.Cp 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004) CrossRefADSGoogle Scholar
  2. 2.
    Almeida et al., Science 316, 579 (2007) CrossRefADSGoogle Scholar
  3. 3.
    J.H. Eberly, T. Yu, Science 316, 555 (2007) CrossRefGoogle Scholar
  4. 4.
    C. Rigetti, A. Blais, M. Devoret, Phys. Rev. Lett. 94, 240502 (2005) CrossRefADSGoogle Scholar
  5. 5.
    G.S. Paraoanu, Phys. Rev. B 74, 140504(R) (2006) CrossRefADSGoogle Scholar
  6. 6.
    A. Blais, J. Gambetta, A. Wallraff, D.I. Schuster, S.M. Girvin, M.H. Devoret, R.J. Schoelkopf, Phys. Rev. A 75, 032329 (2007) CrossRefADSGoogle Scholar
  7. 7.
    M.A. Sillanpää, J.I. Park, R.W. Simmonds, Nature 449, 438 (2007) CrossRefADSGoogle Scholar
  8. 8.
    J. Majer, J.M. Chow, J.M. Gambetta, J. Koch, B.R. Johnson, J.A. Schreier, L. Frunzio, D.I. Schuster, A.A. Houck, A. Wallraff, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Nature 449, 443 (2007) CrossRefADSGoogle Scholar
  9. 9.
    A.O. Niskanen, K. Harabi, F. Yoshihara, Y. Nakamura, S. Lloyd, J.S. Tsai, Science 316, 723 (2007) CrossRefADSGoogle Scholar
  10. 10.
    J. Li, K. Chalapat, G.S. Paraoanu, Phys. Rev. B 78, 064503 (2008) CrossRefADSGoogle Scholar
  11. 11.
    R.R. Puri, Mathematical Methods of Quantum Optics (Springer, Berlin, 2001) zbMATHGoogle Scholar
  12. 12.
    T. Yu, J.H. Eberly, Quantum Inf. Comput. 7, 459 (2007) zbMATHMathSciNetGoogle Scholar
  13. 13.
    A. Al-Qasimi, D.F.V. James, Phys. Rev. A 77, 012117 (2008) CrossRefADSGoogle Scholar
  14. 14.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions (Wiley, New York, 1992) Google Scholar
  15. 15.
    D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M.H. Devoret, Science 296, 886 (2002) CrossRefADSGoogle Scholar
  16. 16.
    G. Ithier, E. Collin, P. Joyez, P.J. Meeson, D. Vion, D. Esteve, F. Chiarello, A. Shnirman, Y. Makhlin, J. Schriefl, G. Schön, Phys. Rev. B 72, 134519 (2005) CrossRefADSGoogle Scholar
  17. 17.
    G.S. Paraoanu, Phys. Rev. Lett. 97, 180406 (2006) CrossRefADSGoogle Scholar
  18. 18.
    M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997) Google Scholar
  19. 19.
    T. Yu, J.H. Eberly, Phys. Rev. Lett. 97, 140403 (2006) CrossRefADSGoogle Scholar
  20. 20.
    W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyHelsinkiFinland

Personalised recommendations