Journal of Low Temperature Physics

, Volume 153, Issue 5–6, pp 285–293 | Cite as

Localization of the Relative Phase via Measurements

Article

Abstract

When two independently-prepared Bose-Einstein condensates are released from their corresponding traps, the absorption image of the overlapping clouds presents an interference pattern. Here we analyze a model introduced by Javanainen and Yoo (Phys. Rev. Lett. 76:161, 1996), who considered two atomic condensates described by plane waves propagating in opposite directions. We present an analytical argument for the measurement-induced breaking of the relative phase symmetry in this system, demonstrating how the phase gets localized after a large enough number of detection events.

Keywords

Fragmentation Phase coherence Quantum measurement 

PACS

03.75.-b 03.65.-w 03.75.Kk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Javanainen, S.M. Yoo, Phys. Rev. Lett. 76, 161 (1996) CrossRefADSGoogle Scholar
  2. 2.
    P.W. Anderson, in The Lesson of Quantum Theory, ed. by J.D. Boer, E. Dal, O. Ulfbeck (Elsevier, Amsterdam, 1986), p. 23–33 Google Scholar
  3. 3.
    M.R. Andrews, C.G. Townsend, H.J. Miesner, D.S. Durfee, D.M. Kurn, W. Ketterle, Science 275, 637 (1997) CrossRefGoogle Scholar
  4. 4.
    Y. Castin, J. Dalibard, Phys. Rev. A 55, 4330 (1997) CrossRefADSGoogle Scholar
  5. 5.
    S. Ashhab, A.J. Leggett, Phys. Rev. A 65, 023604 (2002) CrossRefADSGoogle Scholar
  6. 6.
    F. Laloë, Eur. J. Phys. D 33, 87 (2005) CrossRefADSGoogle Scholar
  7. 7.
    W.J. Mullin, R. Krotkov, F. Laloë, Am. J. Phys. 74, 880 (2006) CrossRefADSGoogle Scholar
  8. 8.
    E.J. Mueller, T.-L. Ho, M. Ueda, G. Baym, Phys. Rev. A 74, 033612 (2006) CrossRefADSGoogle Scholar
  9. 9.
    H. Cable, P.L. Knight, T. Rudolph, Phys. Rev. A 71, 042107 (2005) CrossRefADSGoogle Scholar
  10. 10.
  11. 11.
    Y. Shin, M. Saba, T.A. Pasquini, W. Ketterle, D.E. Pritchard, A.E. Leanhardt, Phys. Rev. Lett. 92, 050405 (2004) CrossRefADSGoogle Scholar
  12. 12.
    Z. Hadzibabic, S. Stock, B. Battelier, V. Bretin, J. Dalibard, Phys. Rev. Lett. 93, 180403 (2004) CrossRefADSGoogle Scholar
  13. 13.
    Y. Shin, C. Sanner, G.-B. Jo, T.A. Pasquini, M. Saba, W. Ketterle, D.E. Pritchard, M. Vengalattore, M. Prentiss, Phys. Rev. A 72, 021604 (2005) CrossRefADSGoogle Scholar
  14. 14.
    G.-B. Jo, Y. Shin, S. Will, T.A. Pasquini, M. Saba, W. Ketterle, D.E. Pritchard, M. Vengalattore, M. Prentiss, Phys. Rev. Lett. 98, 030407 (2007) CrossRefADSGoogle Scholar
  15. 15.
    G.S. Paraoanu, Phys. Rev. A 77, 041605 (2008) CrossRefADSGoogle Scholar
  16. 16.
    A. Polkovnikov, E. Altman, E. Demler, Proc. Natl. Acad. Sci. USA 103, 6125 (2006) CrossRefADSGoogle Scholar
  17. 17.
    V. Gritsev, E. Altman, E. Demler, A. Polkovnikov, Nat. Phys. 2, 705 (2006) CrossRefGoogle Scholar
  18. 18.
    A. Polkovnikov, Europhys. Lett. 78, 1006 (2007) CrossRefGoogle Scholar
  19. 19.
    A. Imambekov, V. Gritsev, E. Demler, arXiv:cond-mat/0703766
  20. 20.
    G.S. Paraoanu, S. Kohler, F. Sols, A.J. Leggett, J. Phys. B At. Mol. Opt. Phys. 34, 4689 (2001) CrossRefADSGoogle Scholar
  21. 21.
    Gh.-S. Paraoanu, Phys. Rev. A 67, 023607 (2003) CrossRefADSGoogle Scholar
  22. 22.
    S. Dürr, Phys. Philos. 4 (2006) Google Scholar
  23. 23.
    A. Dragan, P. Ziń, Phys. Rev. A 76, 042124 (2007) CrossRefADSGoogle Scholar
  24. 24.
    M. Saba, T.A. Pasquini, C. Sanner, Y. Shin, W. Ketterle, D.E. Pritchard, Science 307, 1945 (2005) CrossRefADSGoogle Scholar
  25. 25.
    Y. Shin, G.-B. Jo, M. Saba, T.A. Pasquini, W. Ketterle, D.E. Pritchard, Phys. Rev. Lett. 95, 170402 (2005) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyHelsinkiFinland

Personalised recommendations