Advertisement

Journal of Low Temperature Physics

, Volume 151, Issue 3–4, pp 1034–1042 | Cite as

Tunable Resonators for Quantum Circuits

  • A. Palacios-Laloy
  • F. Nguyen
  • F. Mallet
  • P. Bertet
  • D. Vion
  • D. Esteve
Article

Abstract

We have designed, fabricated and measured high-Q λ/2 coplanar waveguide microwave resonators whose resonance frequency is made tunable with magnetic field by inserting a DC-SQUID array (including 1 or 7 SQUIDs) inside. Their tunability range is 30% of the zero field frequency. Their quality factor reaches up to 3×104. We present a model based on thermal fluctuations that accounts for the dependence of the quality factor with magnetic field.

Keywords

Stripline resonators Superconducting quantum devices SQUIDs 

PACS

74.78.-w 84.40.Dc 85.25.Am 85.25.Dq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Day et al., Nature 425, 817 (2003) CrossRefADSGoogle Scholar
  2. 2.
    R. Barends et al., IEEE Trans. Appl. Supercond. 17, 263 (2007) CrossRefGoogle Scholar
  3. 3.
    B. Mazin, PhD thesis, California Institute of Technology (2004) Google Scholar
  4. 4.
    A. Wallraff et al., Nature 431, 162 (2004) CrossRefADSGoogle Scholar
  5. 5.
    Y. Nakamura, Yu.A. Pashkin, J.S. Tsai, Nature 398, 786 (1999) CrossRefADSGoogle Scholar
  6. 6.
    D. Vion et al., Science 296, 886 (2002) CrossRefADSGoogle Scholar
  7. 7.
    J.M. Martinis et al., Phys. Rev. Lett. 89, 117901 (2002) CrossRefADSGoogle Scholar
  8. 8.
    I. Chiorescu et al., Science 299, 1869 (2003) CrossRefADSGoogle Scholar
  9. 9.
    A. Blais et al., Phys. Rev. A 69, 062320 (2004) CrossRefADSGoogle Scholar
  10. 10.
    A. Lupascu et al., Nat. Phys. 3, 119 (2007) CrossRefGoogle Scholar
  11. 11.
    I. Siddiqi et al., Phys. Rev. B 73, 054510 (2006) CrossRefADSGoogle Scholar
  12. 12.
    J. Majer et al., Nature 449, 443 (2007) CrossRefADSGoogle Scholar
  13. 13.
    M.A. Sillanpaa, J.I. Parks, R.W. Simmonds, Nature 449, 438 (2007) CrossRefADSGoogle Scholar
  14. 14.
    M. Wallquist, V.S. Shumeiko, G. Wendin, Phys. Rev. B 74, 224506 (2006) CrossRefADSGoogle Scholar
  15. 15.
    K.D. Osborn et al., IEEE Trans. Appl. Supercond. 17(2), 166 (2007) CrossRefMathSciNetGoogle Scholar
  16. 16.
    M. Sandberg et al., (2008, to be published) Google Scholar
  17. 17.
    M.A. Castellanos-Beltran, K. Lehnert, Appl. Phys. Lett. 91, 083509 (2007) CrossRefADSGoogle Scholar
  18. 18.
    V.E. Manucharyan et al., Phys. Rev. B 76, 014524 (2007) CrossRefADSGoogle Scholar
  19. 19.
    L.D. Landau, E.M. Lifshitz, Mechanics (Pergamon, Oxford, 1969) Google Scholar
  20. 20.
    L. Frunzio et al., IEEE Trans. Appl. Supercond. 15, 860 (2005) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. Palacios-Laloy
    • 1
  • F. Nguyen
    • 1
  • F. Mallet
    • 1
  • P. Bertet
    • 1
  • D. Vion
    • 1
  • D. Esteve
    • 1
  1. 1.Quantronics Group, Service de Physique de l’Etat Condense (CNRS URA 2464)DSM/DRECAM/SPEC, CEA-SaclayGif-sur-YvetteFrance

Personalised recommendations