Journal of Low Temperature Physics

, Volume 151, Issue 3–4, pp 902–907 | Cite as

The SciCryo Project and Cryogenic Scintillation of Al2O3 for Dark Matter

  • P. C. F. Di Stefano
  • N. Coron
  • P. de Marcillac
  • C. Dujardin
  • M. Luca
  • F. Petricca
  • F. Proebst
  • S. Vanzetto
  • M.-A. Verdier
  • the EDELWEISS collaboration
Open Access
Article

Abstract

We discuss cryogenic scintillation of Al2O3. Room-temperature measurements with α particles are first carried out to study effect of Ti concentration on response. Measurements under X-rays between room temperature and 10 K confirm a doubling of light output. The integration of a scintillation-phonon detector into an ionization-phonon dark matter search is underway, and the quenching factor for neutrons has been verified.

Keywords

Scintillation Cryogenics Sapphire Dark matter 

PACS

29.40.Mc 07.20.Mc 95.35.+d 91.67.Pq 

References

  1. 1.
    V. Sanglard et al., Phys. Rev. D 71, 122002 (2005) CrossRefADSGoogle Scholar
  2. 2.
    D.S. Akerib et al., Phys. Rev. D 72, 052009 (2005) CrossRefADSGoogle Scholar
  3. 3.
    G. Angloher et al., Astropart. Phys. 23, 325 (2005) CrossRefADSGoogle Scholar
  4. 4.
    S. Cebriàn et al., Nucl. Phys. B Proc. Suppl. 138, 519 (2005) CrossRefADSGoogle Scholar
  5. 5.
    A. Benoit et al., Phys. Lett. B 616, 25 (2005) CrossRefADSGoogle Scholar
  6. 6.
    A. de Bellefon et al., Astropart. Phys. 6, 35 (1996) CrossRefADSGoogle Scholar
  7. 7.
    G. Angloher et al., Astropart. Phys. 18, 43 (2002) CrossRefADSGoogle Scholar
  8. 8.
    N. Coron et al., Nucl. Instrum. Methods A 520, 159 (2003) CrossRefADSGoogle Scholar
  9. 9.
    V.B. Mikhailik et al., Nucl. Instrum. Methods A 546, 523 (2005) CrossRefADSGoogle Scholar
  10. 10.
    J. Amaré et al., Appl. Phys. Lett. 87, 264102 (2005) CrossRefADSGoogle Scholar
  11. 11.
    P.C.F. Di Stefano et al., J. Appl. Phys. 94, 6887 (2003) CrossRefADSGoogle Scholar
  12. 12.
    M. Luca et al., in preparation Google Scholar
  13. 13.
    H. Kraus et al., J. Phys. Conf. Ser. 39, 139 (2006). TAUP 2005, Proc. Ninth Int. Work. Topics Astroparticle Underground Phys., Zaragoza, Spain, 10–14 Sept. 2005 CrossRefADSGoogle Scholar
  14. 14.
    S. Marnieros et al., Nucl. Instrum. Methods A 520, 101 (2004) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • P. C. F. Di Stefano
    • 1
  • N. Coron
    • 2
  • P. de Marcillac
    • 2
  • C. Dujardin
    • 3
  • M. Luca
    • 1
  • F. Petricca
    • 4
  • F. Proebst
    • 4
  • S. Vanzetto
    • 1
  • M.-A. Verdier
    • 1
  • the EDELWEISS collaboration
  1. 1.Institut de Physique Nucléaire de Lyon, IPNL, UMR5822, CNRS-IN2P3Université Claude Bernard Lyon 1, Université de LyonVilleurbanneFrance
  2. 2.Institut d’Astrophysique SpatialeCNRS & Université Paris SudOrsay CedexFrance
  3. 3.Laboratoire de Physico-Chimie des Matériaux Luminescents, UMR 5620Université Claude Bernard Lyon 1VilleurbanneFrance
  4. 4.Max-Planck-Institut für PhysikMünchenGermany

Personalised recommendations