Journal of Low Temperature Physics

, Volume 151, Issue 3–4, pp 790–799 | Cite as

Hot on the Tail of the Elusive WIMP: Cryogenic Dark Matter Searches in the 21st Century

  • Tarek SaabEmail author


It is now well established and accepted that the universe has a total density equal to the critical density (Ω=1) and that roughly 25% of that amount is accounted for by non-relativistic particles. That these particles, referred to as Dark Matter, have remained a mystery has served to motivate physicists to design more ingenious and far reaching experiments in an attempt to identify and understand them. This paper will review various ongoing and proposed Dark Matter searches which employ cryogenic techniques to both detect the rare Dark Matter interactions as well as reject the vast number of background events from cosmic ray and radioactive backgrounds. Such experiments are already sensitive to and are able to reject certain models of supersymmetry, and with the increases in sensitivity projected over the next few years may even be able to detect these elusive particles.


Dark Matter Direct detection Cryogenic detectors 


95.35.+d 14.80.Ly 29.40.Vj 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Clowe, M. Bradač, A.H. Gonzalez, M. Markevitch, S.W. Randall, C. Jones, D. Zaritsky, A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109–L113 (2006) (September) CrossRefADSGoogle Scholar
  2. 2.
    D.N. Spergel et al., First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003) CrossRefADSGoogle Scholar
  3. 3.
    D.N. Spergel et al., Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: implications for cosmology. Astrophys. J. Suppl. Ser. 170, 377–408 (2007) (June) CrossRefADSGoogle Scholar
  4. 4.
    M. Tegmark et al., Cosmological constraints from the SDSS luminous red galaxies. Phys. Rev. D 74(12), 123507 (2006) (December) CrossRefADSGoogle Scholar
  5. 5.
    M. Tegmark, A. Aguirre, M.J. Rees, F. Wilczek, Dimensionless constants, cosmology, and other dark matters. Phys. Rev. D 73(2), 023505 (2006) (January) CrossRefADSGoogle Scholar
  6. 6.
    B.W. Lee, S. Weinberg, Cosmological lower bound on heavy-neutrino masses. Phys. Rev. Lett. 39, 165–168 (1977) (July) CrossRefADSGoogle Scholar
  7. 7.
    G. Jungman, M. Kamionkowski, K. Griest, Supersymmetric dark matter. Phys. Rep. 267, 195–373 (1996) CrossRefADSGoogle Scholar
  8. 8.
    J.D. Lewin, P.F. Smith, Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astropart. Phys. 6, 87–112 (1996) CrossRefADSGoogle Scholar
  9. 9.
    R.J. Gaitskell, Direct detection of dark matter. Ann. Rev. Nucl. Particle Sci. 54, 315–359 (2004) (December) CrossRefADSGoogle Scholar
  10. 10.
    P.N. Luke, Voltage-assisted calorimetric ionization detector. J. Appl. Phys. 64, 6858–6860 (1988) (December) CrossRefADSGoogle Scholar
  11. 11.
    B. Neganov, V. Trofimov, JTEP Lett. 28, 328 (1978) ADSGoogle Scholar
  12. 12.
    B. Majorovits et al., The CRESST dark matter search. In The Identification of Dark Matter, ed. by N.J.C. Spooner, V. Kudryavtsev (2005), p. 212 Google Scholar
  13. 13.
    C. Cozzini, G. Angloher, C. Bucci, F. von Feilitzsch, T. Frank, D. Hauff, S. Henry, T. Jagemann, J. Jochum, H. Kraus, B. Majorovits, J. Ninkovic, F. Petricca, F. Pröbst, Y. Ramachers, W. Rau, M. Razeti, W. Seidel, M. Stark, L. Stodolsky, S. Uchaikin, H. Wulandari, CRESST cryogenic dark matter search. New Astron. Rev. 49, 255–258 (2005) (May) CrossRefADSGoogle Scholar
  14. 14.
    J. Lindhard et al., Mat. Fys. Medd. Dan. Selsk. 33, 10 (1963) Google Scholar
  15. 15.
    G. Angloher et al., Limits on WIMP dark matter using scintillating CaOW4 cryogenic detectors with active background suppression. Astropart. Phys. 23, 325–339 (2005) (April) CrossRefADSGoogle Scholar
  16. 16.
    V. Sanglard for the EDELWEISS collaboration, EDELWEISS-II: Status and future. ArXiv Astrophysics e-prints, December 2006,
  17. 17.
    V. Sanglard et al., Final results of the EDELWEISS-I dark matter search with cryogenic heat-and-ionization Ge detectors. Phys. Rev. D 71(12), 122002 (2005) (June) CrossRefADSGoogle Scholar
  18. 18.
    O. Martineau et al., Calibration of the EDELWEISS cryogenic heat-and-ionization germanium detectors for dark matter search. Nucl. Instrum. Methods Phys. Res. A 530, 426–439 (2004) (September) CrossRefADSGoogle Scholar
  19. 19.
    D.S. Akerib et al., Exclusion limits on the WIMP-nucleon cross section from the first run of the cryogenic dark matter search in the Soudan Underground Laboratory. Phys. Rev. D 72(5), 052009 (2005) (September) CrossRefADSGoogle Scholar
  20. 20.
    D.S. Akerib et al., Limits on spin-independent interactions of weakly interacting massive particles with nucleons from the two-tower run of the cryogenic dark matter search. Phys. Rev. Lett. 96(1), 011302 (2006) (January) CrossRefADSGoogle Scholar
  21. 21.
    P.L. Brink et al., Present status of the SuperCDMS program. J. Low Temp. Phys. (2008). doi:  10.1007/s10909-008-9740-7
  22. 22.
    E. Aprile et al., The XENON dark matter experiment. In Dark Matter in Astro- and Particle Physics, ed. by H.V. Klapdor-Kleingrothaus, R. Arnowitt (2005), pp. 220–233 Google Scholar
  23. 23.
    J. Angle et al., First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory. ArXiv e-prints, 706, May 2007,
  24. 24.
    C.B. Winkelmann, J.E.E. Collin, Y.M. Bunkov, H. Godfrin, ULTIMA: a bolometric detector for dark matter search using superfluid 3He. Nucl. Instrum. Methods Phys. Res. A 559, 384–386 (2006) (April) CrossRefADSGoogle Scholar
  25. 25.
    E.A. Baltz, P. Gondolo, Markov chain Monte Carlo exploration of minimal supergravity with implications for dark matter. J. High Energy Phys. 10, 52 (2004) (October) CrossRefADSGoogle Scholar
  26. 26.
    L. Roszkowski, R. Ruiz de Austri, R. Trotta, Implications for the constrained MSSM from a new prediction for b→ sγ. J. High Energy Phys. 7, 75 (2007) (July) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of FloridaGainesvilleUSA

Personalised recommendations