Journal of Low Temperature Physics

, Volume 150, Issue 3–4, pp 567–576 | Cite as

Is a Gas of Strongly Interacting Atomic Fermions a Nearly Perfect Fluid?

  • A. Turlapov
  • J. Kinast
  • B. Clancy
  • Le Luo
  • J. Joseph
  • J. E. Thomas
Article

Abstract

We use all-optical methods to produce a highly-degenerate Fermi gas of spin-1/2 6Li atoms. A magnetic field tunes the gas near a collisional (Feshbach) resonance, producing strong interactions between spin-up and spin-down atoms. We have measured properties of a breathing mode over a wide range of temperatures. As the temperature is increased from below the superfluid transition to above, the frequency of the mode is always close to the hydrodynamic value, while the damping rate increases. A complete explanation of both the frequency and the damping rate in the normal collisional regime has not been achieved. Our measurements of the damping rate as a function of the energy of the gas are used to estimate an upper bound on the viscosity. Using our new measurements of the entropy of the gas, we estimate the ratio of the shear viscosity to the entropy density and compare the result with a recent string theory conjecture for the minimum viscosity of a perfect quantum fluid.

Keywords

Fermi gas Superfluidity Quantum viscosity strong interactions 

PACS

03.75.Ss 32.80.Pj 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.M. O’Hara, S.L. Hemmer, M.E. Gehm, S.R. Granade, J.E. Thomas, Science 298, 2179 (2002) CrossRefADSGoogle Scholar
  2. 2.
    J.E. Thomas, M.E. Gehm, Am. Sci. 92, 238 (2004) CrossRefGoogle Scholar
  3. 3.
    H. Heiselberg, Phys. Rev. A 63, 043606 (2001) CrossRefADSGoogle Scholar
  4. 4.
    G.A. Baker Jr., Phys. Rev. C 60, 054311 (1999) CrossRefADSGoogle Scholar
  5. 5.
    J. Carlson, S.-Y. Chang, V.R. Pandharipande, K.E. Schmidt, Phys. Rev. Lett. 91, 050401 (2003) CrossRefADSGoogle Scholar
  6. 6.
    P.F. Kolb, U. Heinz, Quark Gluon Plasma 3 (World Scientific, 2003), p. 634 Google Scholar
  7. 7.
    Q. Chen, J. Stajic, S. Tan, K. Levin, Phys. Rep. 412, 1 (2005) CrossRefADSGoogle Scholar
  8. 8.
    P.K. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005) CrossRefADSGoogle Scholar
  9. 9.
    J. Kinast, A. Turlapov, J.E. Thomas, Phys. Rev. Lett. 94, 170404 (2005) CrossRefADSGoogle Scholar
  10. 10.
    L. Luo, B. Clancy, J. Joseph, J. Kinast, J.E. Thomas, Phys. Rev. Lett. 98, 080402 (2007) CrossRefADSGoogle Scholar
  11. 11.
    M. Bartenstein et al., Phys. Rev. Lett. 92, 120401 (2004) CrossRefADSGoogle Scholar
  12. 12.
    A. Altmeyer et al., Phys. Rev. Lett. 98, 040401 (2007) CrossRefADSGoogle Scholar
  13. 13.
    J. Joseph et al., Phys. Rev. Lett. 98, 170401 (2007) CrossRefADSGoogle Scholar
  14. 14.
    J. Kinast et al., Science 307, 1296 (2005) CrossRefADSGoogle Scholar
  15. 15.
    M.W. Zwierlein, A. Schirotzek, C.H. Schunck, W. Ketterle, Science 311, 492 (2006) CrossRefADSGoogle Scholar
  16. 16.
    G.B. Partridge, W. Li, R.I. Kamar, Y. Liao, R.G. Hulet, Science 311, 503 (2006) CrossRefADSGoogle Scholar
  17. 17.
    M. Houbiers et al., Phys. Rev. A 56, 4864 (1997) CrossRefADSGoogle Scholar
  18. 18.
    M. Houbiers, H.T.C. Stoof, W.I. McAlexander, R.G. Hulet, Phys. Rev. A 57, R1497 (1998) CrossRefADSGoogle Scholar
  19. 19.
    J. Kinast, S.L. Hemmer, M.E. Gehm, A. Turlapov, J.E. Thomas, Phys. Rev. Lett. 92, 150402 (2004) CrossRefADSGoogle Scholar
  20. 20.
    M. Bartenstein et al., Phys. Rev. Lett. 92, 203201 (2004) CrossRefADSGoogle Scholar
  21. 21.
    J. Kinast, A. Turlapov, J.E. Thomas, Phys. Rev. A 70, 051401(R) (2004) CrossRefADSGoogle Scholar
  22. 22.
    M. Zwierlein, J. Abo-Shaeer, A. Schirotzek, C. Schunck, W. Ketterle, Nature 435, 1047 (2005) CrossRefADSGoogle Scholar
  23. 23.
    C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004) CrossRefADSGoogle Scholar
  24. 24.
    M.W. Zwierlein et al., Phys. Rev. Lett. 92, 120403 (2004) CrossRefADSGoogle Scholar
  25. 25.
    C. Chin et al., Science 305, 1128 (2004) CrossRefADSGoogle Scholar
  26. 26.
    M. Greiner, C.A. Regal, D.S. Jin, Phys. Rev. Lett. 94, 070403 (2005) CrossRefADSGoogle Scholar
  27. 27.
    G.B. Partridge, K.E. Strecker, R.I. Kamar, M.W. Jack, R.G. Hulet, Phys. Rev. Lett. 95, 020404 (2005) CrossRefADSGoogle Scholar
  28. 28.
    M.E. Gehm, S.L. Hemmer, S.R. Granade, K.M. O’Hara, J.E. Thomas, Phys. Rev. A 68, 011401(R) (2003) ADSGoogle Scholar
  29. 29.
    T.-L. Ho, Phys. Rev. Lett. 92, 090402 (2004) CrossRefADSGoogle Scholar
  30. 30.
    H. Hu, P.D. Drummond, X.-J. Liu, Nat. Phys. 3, 469 (2007) CrossRefGoogle Scholar
  31. 31.
    T. Bourdel et al., Phys. Rev. Lett. 91, 020402 (2003) CrossRefADSGoogle Scholar
  32. 32.
    C.A. Regal, M. Greiner, S. Giorgini, M. Holland, D.S. Jin, Phys. Rev. Lett. 95, 250404 (2005) CrossRefADSGoogle Scholar
  33. 33.
    J.E. Thomas, A. Turlapov, J. Kinast, Phys. Rev. Lett. 95, 120402 (2005) CrossRefADSGoogle Scholar
  34. 34.
    P. Massignan, G.M. Bruun, H. Smith, Phys. Rev. A 71, 033607 (2005) CrossRefADSGoogle Scholar
  35. 35.
    G.M. Bruun, H. Smith, Phys. Rev. A 75, 043612 (2007) CrossRefADSGoogle Scholar
  36. 36.
    T. Bourdel et al., Phys. Rev. Lett. 93, 050401 (2004) CrossRefADSGoogle Scholar
  37. 37.
    M. Bartenstein et al., Phys. Rev. Lett. 94, 103201 (2005) CrossRefADSGoogle Scholar
  38. 38.
    M.W. Zwierlein, C.H. Schunck, A. Schirotzek, W. Ketterle, Nature 442, 54 (2006) CrossRefADSGoogle Scholar
  39. 39.
    Q. Chen, C.A. Regal, D.S. Jin, K. Levin, Phys. Rev. A 74, 011601(R) (2005) ADSGoogle Scholar
  40. 40.
    Q. Chen, J. Stajic, K. Levin, Phys. Rev. Lett. 95, 260405 (2005) CrossRefADSGoogle Scholar
  41. 41.
    J. Stajic, Q. Chen, K. Levin, Phys. Rev. Lett. 94, 060401 (2005) CrossRefADSGoogle Scholar
  42. 42.
    C.H. Schunck, Y. Shin, A. Schirotzek, M.W. Zwierlein, W. Ketterle, Science 316, 867 (2007) CrossRefADSGoogle Scholar
  43. 43.
    E. Shuryak, Prog. Part. Nucl. Phys. 53, 273 (2004) CrossRefADSGoogle Scholar
  44. 44.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1975) Google Scholar
  45. 45.
    T. Schäfer, The shear viscosity to entropy density ratio of trapped fermions in the unitary limit (2007), ArXiv:cond-mat/0701251 Google Scholar
  46. 46.
    S. Bass, Duke University, private communication Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • A. Turlapov
    • 1
  • J. Kinast
    • 1
  • B. Clancy
    • 1
  • Le Luo
    • 1
  • J. Joseph
    • 1
  • J. E. Thomas
    • 1
  1. 1.Department of PhysicsDuke UniversityDurhamUSA
  2. 2.Institute of Applied PhysicsRussian Academy of SciencesNizhniy NovgorodRussia

Personalised recommendations