Preliminary Measurements on Grid Turbulence in Liquid 4He
Article
First Online:
- 59 Downloads
- 11 Citations
Abstract
A grid has been pulled through a column of liquid helium at speeds as high as 1 m/s and at temperatures as low as 90 mK. A 300 micrometer Ge thermometer with response time of less than 1 ms measured the temperature rise resulting from the decay of the turbulence generated. It is believed that homogeneous, isotropic quantum turbulence was formed, since mesh Reynolds numbers in excess of 100,000 were created. The rates and power spectra of the energy increases detected in the helium after grid-pulls are determined. The results are compared to other quantum and classical results, and to the theory of the Kelvin wave cascade in a viscosity-free fluid.
Keywords
Superfluid 4He Turbulence Kolmogorov GridPACS
47.27.Gs 47.37.+q 67.40.VsPreview
Unable to display preview. Download preview PDF.
References
- 1.J.F. Allen, A.D. Misener, Nature, Lond. 141, 75 (1938) CrossRefADSGoogle Scholar
- 2.P. Kapitza, Nature, Lond. 141, 74 (1938) CrossRefADSGoogle Scholar
- 3.L. Tisza, Comptes Rendus 207, 1035, 1186 (1938) Google Scholar
- 4.L. Tisza, J. Phys. Rad. 1, 165, 350 (1940) Google Scholar
- 5.L. Landau, J. Phys. U.S.S.R. 5, 71 (1941) Google Scholar
- 6.W.F. Vinen, Proc. R. Soc. Lond. Ser. A 242(1231), 493–515 (1957) ADSCrossRefGoogle Scholar
- 7.J. Wilks, D.S. Betts, An Introduction to Liquid Helium (Oxford University Press, New York, 1987) Google Scholar
- 8.S.R. Stalp, J.J. Niemela, W.F. Vinen, R.J. Donnelly, Phys. Fluids 14, 1377 (2002) CrossRefADSGoogle Scholar
- 9.R.P. Feynman, in Progress in Low Temperature Physics, vol. 1, ed. by C.J. Gorter (North-Holland, Amsterdam, 1955), p. 34 Google Scholar
- 10.J.T. Tough, in Progress in Low Temperature Physics, vol. VIII, ed. by C.J. Gorter (North-Holland, Amsterdam, 1955), p. 133 Google Scholar
- 11.J. Maurer, P. Tabeling, Europhys. Lett. 43, 29 (1998) CrossRefADSGoogle Scholar
- 12.M. Morishita, T. Kuroda, A. Sawada, T. Satoh, J. Low Temp. Phys. 76, 387 (1989) CrossRefADSGoogle Scholar
- 13.J. Jaeger, B. Schuderer, W. Schoepe, Phys. Rev. Lett. 74, 566 (1995) CrossRefADSGoogle Scholar
- 14.D. Charalambous, L. Skrbek, P.C. Hendry, P.V.E. McClintock, W.F. Vinen, Phys. Rev. E 74, 036307 (2006) CrossRefADSGoogle Scholar
- 15.S.R. Stalp, L. Skrbek, R.J. Donnelly, Phys. Rev. Lett. 82, 4831 (1999) CrossRefADSGoogle Scholar
- 16.K.W. Schwarz, Phys. Rev. B 31, 5782 (1985) CrossRefADSGoogle Scholar
- 17.K.W. Schwarz, Phys. Rev. B 38, 2398 (1988) CrossRefADSGoogle Scholar
- 18.D. Kivotides, C.J. Vassilicos, D.C. Samuels, C.F. Barenghi, Europhys. Lett. 57, 845 (2002) CrossRefADSGoogle Scholar
- 19.M. Kobayashi, M. Tsubota, Phys. Rev. Lett. 94, 065302 (2005) CrossRefADSGoogle Scholar
- 20.M. Kobayashi, M. Tsubota, J. Phys. Soc. Jpn. 74, 3248 (2005) zbMATHCrossRefADSGoogle Scholar
- 21.W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 28, 167 (2002) CrossRefGoogle Scholar
- 22.S.-C. Liu, G. Labbe, G.G. Ihas, J. Low Temp. Phys. 145, 165 (2006) CrossRefADSGoogle Scholar
- 23.Y. Zhou, V.F. Mitin, S.C. Liu, I. Luria, M. Padron, R. Adjimambetov, G.G. Ihas, in Proceedings of the 24th International Conference on Low Temperature Physics, ed. by Y. Takano, et al., Orlando, FL, Aug. 2005. AIP Conf. Proc., vol. 850 (AIP, New York, 2006), p. 1631 Google Scholar
- 24.National Instruments board PCI-MIO-16E-4, http://www.ni.com
- 25.A. Golov, private communication Google Scholar
Copyright information
© Springer Science+Business Media, LLC 2007