Advertisement

Journal of Low Temperature Physics

, Volume 150, Issue 3–4, pp 258–266 | Cite as

Elementary Excitations in Solid and Liquid 4He at the Melting Pressure

  • I. A. TodoshchenkoEmail author
  • H. Alles
  • H. J. Junes
  • M. S. Manninen
  • A. Y. Parshin
  • V. Tsepelin
Article

Abstract

Recent discovery of a nonclassical rotational inertia (NCRI) in solid 4He below 0.2 K by Kim and Chan has revived great interest in the problem of supersolidity and initiated intensive study on the properties of solid 4He. A direct proof that the onset of NCRI corresponds to the supersolid transition would be the observation of a corresponding drop of the entropy of solid 4He below the transition temperature. We have measured the melting pressure of ultrapure 4He in the temperature range from 0.01 to 0.45 K with several single crystals grown at different pressures and with the accuracy of 0.5 μbar. In addition, supplementary measurements of the pressure in liquid 4He at constant volume have been performed, which allowed us to eliminate the contribution of the temperature-dependent properties of the pressure gauge from the measured melting pressure data. With the correction to the temperature-dependent sensitivity of the pressure gauge, the variation of the melting pressure of 4He below 320 mK obeys the pure T 4 law due to phonons with the accuracy of 0.5 μbar, and no sign of the transition is seen (Todoshchenko et al. in JETP Lett. 85:454, 2007). This sets the upper limit of ∼5⋅10−8 R for a possible excess entropy in high-quality 4He crystals below 320 mK. At higher temperatures the contribution from rotons in the superfluid 4He has been observed. The thermal expansion coefficient of the superfluid 4He has been measured in the range from 0.01 to 0.7 K with the accuracy of ∼10−7 1/K, or by two orders of magnitude better than in previous measurements. The roton contributions to the melting pressure and to the pressure in liquid at a constant volume are consistent and yield the value of 6.8 K for the roton gap, which is very close to the values obtained with other methods. As no contribution due to weakly interacting vacancies to the melting pressure of 4He has been observed, the lower limit of about 5.5 K for their activation energy can be set.

Keywords

Quantum solids Supersolids Excitations in quantum systems 

PACS

05.70.-a 67.40.Db 67.80.-s 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I.A. Todoshchenko, H. Alles, H.J. Junes, A.Y. Parshin, V. Tsepelin, JETP Lett. 85, 454 (2007) CrossRefADSGoogle Scholar
  2. 2.
    E. Kim, M.H.W. Chan, Nature 427, 225 (2004) CrossRefADSGoogle Scholar
  3. 3.
    E. Kim, M.H.W. Chan, Science 305, 1941 (2004) CrossRefADSGoogle Scholar
  4. 4.
    A.S.C. Rittner, J.D. Reppy, Phys. Rev. Lett. 97, 165301 (2006) CrossRefADSGoogle Scholar
  5. 5.
    K. Shirahama, M. Kondo, S. Takada, Y. Shibayama, Bull. Am. Phys. Soc. 51, 450 (2006) Google Scholar
  6. 6.
    Y. Aoki, J.C. Graves, H. Kojima, Phys. Rev. Lett. 99, 015301 (2007) CrossRefADSGoogle Scholar
  7. 7.
    A. Penzev, Y. Yasuta, M. Kubota, J. Low Temp. Phys. 148, 677 (2007) CrossRefADSGoogle Scholar
  8. 8.
    A.F. Andreev, I.M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969) Google Scholar
  9. 9.
    G.V. Chester, Phys. Rev. A 2, 256 (1970) CrossRefADSGoogle Scholar
  10. 10.
    M.W. Meisel, Physica B 178, 121 (1992), Amsterdam CrossRefADSGoogle Scholar
  11. 11.
    A.S.C. Rittner, J.D. Reppy, Phys. Rev. Lett. 98, 175302 (2007) CrossRefADSGoogle Scholar
  12. 12.
    A.C. Clark, J.T. West, M.H.W. Chan, Phys. Rev. Lett. 99, 135302 (2007) CrossRefADSGoogle Scholar
  13. 13.
    S. Sasaki, R. Ishiguro, F. Caupin, H.J. Maris, S. Balibar, Science 313, 1098 (2006) CrossRefADSGoogle Scholar
  14. 14.
    M. Boninsegni, N. Prokof’ev, B. Svistunov, Phys. Rev. Lett. 96, 105301 (2006) CrossRefADSGoogle Scholar
  15. 15.
    M. Boninsegni et al., Phys. Rev. Lett. 99, 035301 (2007) CrossRefADSGoogle Scholar
  16. 16.
    A.V. Balatsky, M.J. Graf, Z. Nussinov, S.A. Trugman, Phys. Rev. B 75, 094201 (2007) CrossRefADSGoogle Scholar
  17. 17.
    A.F. Andreev, JETP Lett. 85, 585 (2008) CrossRefGoogle Scholar
  18. 18.
    J. Toner, cond-mat/0707.3842 (2007) Google Scholar
  19. 19.
    X. Dai, M. Ma, F.-C. Zhang, Phys. Rev. B 72, 132504 (2005) CrossRefADSGoogle Scholar
  20. 20.
    P.W. Anderson, W.F. Brinkman, D.A. Huse, Science 310, 1164 (2005) CrossRefADSGoogle Scholar
  21. 21.
    P.W. Anderson, Nature Phys. 3, 160 (2007) CrossRefADSGoogle Scholar
  22. 22.
    A.T. Dorsey, P.M. Goldbart, J. Toner, Phys. Rev. Lett. 96, 055301 (2006) CrossRefADSGoogle Scholar
  23. 23.
    A.C. Clark, M.H.W. Chan, J. Low Temp. Phys. 138, 853 (2005) CrossRefGoogle Scholar
  24. 24.
    X. Lin, A.C. Clark, M.H.W. Chan, Bull. Am. Phys. Soc. 52, 610 (2007) Google Scholar
  25. 25.
    X. Lin, A.C. Clark, M.H.W. Chan, Nature 449, 1025 (2007) CrossRefADSGoogle Scholar
  26. 26.
    J.P. Ruutu, P.J. Hakonen, A.V. Babkin, A.Y. Parshin, G. Tvalashvili, J. Low Temp. Phys. 112, 117 (1998) CrossRefGoogle Scholar
  27. 27.
    W.R. Gardner, J.K. Hoffer, N.E. Phillips, Phys. Rev. A 7, 1029 (1973) CrossRefADSGoogle Scholar
  28. 28.
    E.R. Grilly, J. Low Temp. Phys. 11, 33 (1973) CrossRefADSGoogle Scholar
  29. 29.
    R.L. Mills, S.G. Sydoriak, Ann. Phys. (NY) 34, 276 (1965) CrossRefADSGoogle Scholar
  30. 30.
    V. Tsepelin, H. Alles, A. Babkin, R. Jochemsen, A.Y. Parshin, I.A. Todoshchenko, J. Low Temp. Phys. 129, 489 (2002) CrossRefGoogle Scholar
  31. 31.
    G.C. Straty, E.D. Adams, Rev. Sci. Instrum. 40, 1393 (1969) CrossRefADSGoogle Scholar
  32. 32.
    D.S. Greywall, Phys. Rev. B 18, 2127 (1978) CrossRefADSGoogle Scholar
  33. 33.
    D.S. Greywall, Phys. Rev. B 21, 1329 (1979) CrossRefADSGoogle Scholar
  34. 34.
    G.A. Lengua, J.M. Goodkind, J. Low Temp. Phys. 79, 251 (1990) CrossRefADSGoogle Scholar
  35. 35.
    A.F. Andreev, Progr. Low Temp. Phys. 8, 101 (1982) Google Scholar
  36. 36.
    B.M. Abraham, Y. Eckstein, J.B. Ketterson, M. Kuchnir, P.R. Roach, Phys. Rev. A 1, 250 (1970) CrossRefADSGoogle Scholar
  37. 37.
    H.B. Maris, S. Balibar, J. Low Temp. Phys. 147, 539 (2007) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • I. A. Todoshchenko
    • 1
    Email author
  • H. Alles
    • 1
  • H. J. Junes
    • 1
  • M. S. Manninen
    • 1
  • A. Y. Parshin
    • 2
  • V. Tsepelin
    • 3
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyHelsinkiFinland
  2. 2.P.L. Kapitza InstituteMoscowRussia
  3. 3.Department of PhysicsLancaster UniversityLancasterUK

Personalised recommendations