Advertisement

Journal of Low Temperature Physics

, Volume 150, Issue 3–4, pp 135–144 | Cite as

Bose-Einstein Condensation of Magnons in Superfluid 3He

  • Yuriy M. Bunkov
  • Grigory E. Volovik
Article

Abstract

The possibility of Bose-Einstein condensation of excitations has been discussed for a long time. The phenomenon of the phase-coherent precession of magnetization in superfluid 3He and the related effects of spin superfluidity are based on the true Bose-Einstein condensation of magnons. Several different states of coherent precession has been observed in 3He-B: homogeneously precessing domain (HPD); persistent signal formed by Q-balls at very low temperatures; coherent precession with fractional magnetization; and a mode of the coherent precession in compressed aerogel. The coherent precession has been also found in 3He-A in compressed aerogel. Here we demonstrate that all these cases are examples of a Bose-Einstein condensation of magnons, with the magnon interaction term in the Gross-Pitaevskii equation being provided by different types of spin-orbit coupling in the background of the coherent precession.

Keywords

Bose-Einstein condensation Magnons Superfluid 3He 

PACS

67.57.Fg 05.45.Yv 11.27.+d 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002) Google Scholar
  2. 2.
    A.J. Leggett, Rev. Mod. Phys. 73, 307 (2001) CrossRefADSGoogle Scholar
  3. 3.
    P.L. Kapitza, Nature 141, 74 (1938) CrossRefGoogle Scholar
  4. 4.
    J.P. Eisenstein, A.H. MacDonald, Nature 432, 691 (2004) CrossRefADSGoogle Scholar
  5. 5.
    J. Kasprzak et al., Nature 443, 409 (2006) CrossRefADSGoogle Scholar
  6. 6.
    S.O. Democritov et al., Nature 443, 430 (2006) CrossRefADSGoogle Scholar
  7. 7.
    C. Ruegg, Nature 423, 63 (2003) CrossRefADSGoogle Scholar
  8. 8.
    E. Della Torre et al., Phys. Rev. Lett. 94, 147210 (2005) CrossRefADSGoogle Scholar
  9. 9.
    T. Radu et al., Phys. Rev. Lett. 95, 127202 (2005) CrossRefADSGoogle Scholar
  10. 10.
    D. Snoke, Nature 443, 403 (2006) CrossRefADSGoogle Scholar
  11. 11.
    A.S. Borovik-Romanov et al., JETP Lett. 40, 1033 (1984) ADSGoogle Scholar
  12. 12.
    I.A. Fomin, JETP Lett. 40, 1036 (1984) ADSGoogle Scholar
  13. 13.
    I.A. Fomin, Physica B 169, 153 (1991) CrossRefADSGoogle Scholar
  14. 14.
    Y.M. Bunkov, J. Low Temp. Phys. 135, 337 (2004) CrossRefGoogle Scholar
  15. 15.
    Spin Supercurrent and Novel Properties of NMR in 3He, in Progress in Low Temp. Physics, vol. 14, ed. by W. Halperin (Elsevier, 1995), p. 69 Google Scholar
  16. 16.
    G.E. Volovik, cond-mat/0701180 Google Scholar
  17. 17.
    Y.M. Bunkov, J. Magn. Magn. Mater. 310, 1476 (2007) CrossRefADSGoogle Scholar
  18. 18.
    J. Elbs et al., arXiv:0707.3544 Google Scholar
  19. 19.
    Y.M. Bunkov, G.E. Volovik, Phys. Rev. Lett. 98, 265302 (2007) CrossRefADSGoogle Scholar
  20. 20.
    T. Sato et al., to be published Google Scholar
  21. 21.
    V.V. Dmitriev et al., Phys. Rev. Lett. 78, 86 (1997) CrossRefADSGoogle Scholar
  22. 22.
    Y.M. Bunkov, G.E. Volovik, JETP 76, 794 (1993) ADSGoogle Scholar
  23. 23.
    V.V. Dmitriev et al., JETP Lett. 76, 312 (2002) CrossRefADSGoogle Scholar
  24. 24.
    I.A. Fomin, JETP Lett. 39, 466 (1984) ADSGoogle Scholar
  25. 25.
    A.S. Borovik-Romanov et al., JETP Lett. 39, 469 (1984) ADSGoogle Scholar
  26. 26.
    T. Kunimatsu et al., JETP Lett. 86 (2007) Google Scholar
  27. 27.
    S.R. Coleman, Nucl. Phys. B 262, 263 (1985) CrossRefADSGoogle Scholar
  28. 28.
    A. Kusenko et al., Phys. Rev. Lett. 80, 3185 (1998) CrossRefADSGoogle Scholar
  29. 29.
    K. Enqvist, A. Mazumdar, Phys. Rep. 380, 99 (2003) zbMATHCrossRefADSMathSciNetGoogle Scholar
  30. 30.
    K. Enqvist, M. Laine, JCAP 0308, 003 (2003) ADSGoogle Scholar
  31. 31.
    Y.M. Bunkov et al., Phys. Rev. Lett. 69, 3092 (1992) CrossRefADSGoogle Scholar
  32. 32.
    M.M. Salomaa, G.E. Volovik, Rev. Mod. Phys. 59, 533 (1987) CrossRefADSGoogle Scholar
  33. 33.
    A.S. Chen et al., J. Low Temp. Phys. 110, 51 (1998) CrossRefGoogle Scholar
  34. 34.
    D.I. Bradley et al., J. Low Temp. Phys. 134, 351 (1998) CrossRefGoogle Scholar
  35. 35.
    D.J. Cousins et al., Phys. Rev. Lett. 82, 4484 (1999) CrossRefADSGoogle Scholar
  36. 36.
    Y.M. Bunkov, J. Low Temp. Phys. 138, 753 (2005) CrossRefGoogle Scholar
  37. 37.
    V.V. Dmitriev et al., Phys. Rev. B 59, 165 (1999) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.MCBT, Institute NeelCNRS/UJFGrenobleFrance
  2. 2.Low Temperature LaboratoryHelsinki University of TechnologyEspooFinland
  3. 3.L.D. Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations