Journal of Low Temperature Physics

, Volume 148, Issue 3–4, pp 305–310 | Cite as

Quantum Turbulence Generated and Detected by a Vibrating Quartz Fork

  • M. Blažková
  • M. Človečko
  • E. Gažo
  • L. Skrbek
  • P. Skyba


Flow due to a commercially available vibrating quartz fork is studied in gaseous helium, He I, He II and 3He–B, over a wide range of temperatures and pressures. On increasing the driving force, the flow changes in character from laminar (characterized by a linear velocity versus drive dependence) to turbulent (characterized by a square root velocity versus drive dependence). In classical fluids, we characterize this transition by a critical Reynolds number, Re c =U cr δ/ν, where U cr is the critical velocity, ν stands for the kinematic viscosity, \(\delta=\sqrt{2\nu/\omega}\) is the viscous penetration depth and ω is the angular frequency of oscillations. U cr of order 10 cm/s observed in He II and 1 mm/s in 3He–B agree with those found with other vibrating objects such as spheres, wires and grids, as well as with available numerical simulations of vortex motion in an applied ac flow.


47.80.-v 47.27.Cn 67.40.Vs 85.50.-n 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Blaauwgeers et al., J. Low Temp. Phys. 146, 537 (2007) CrossRefADSGoogle Scholar
  2. 2.
    H. Schlichting, K. Gersten, Boundary-Layer Theory (Springer, Berlin, 1996) Google Scholar
  3. 3.
    R.D. McCarty, Technical Note 631, National Bureau of Standards, Gaithersburg, Maryland, 1972 Google Scholar
  4. 4.
    V.D. Arp, R.D. McCarty, The properties of Critical Helium Gas, Technical Report, Univ. Oregon, 1998 Google Scholar
  5. 5.
    R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Data 27, 1217 (1998) ADSCrossRefGoogle Scholar
  6. 6.
    M. Blažková, D. Schmoranzer, L. Skrbek, Phys. Rev. E 75, 025302 (2007) CrossRefADSGoogle Scholar
  7. 7.
    This transition in He II was also independently observed by J. Hosio, V.B. Eltsov and M. Krusius in LTL Helsinki; private communication Google Scholar
  8. 8.
    M. Morishita, T. Kuroda, A. Sawada, T. Satoh, J. Low Temp. Phys. 76, 387 (1989) CrossRefADSGoogle Scholar
  9. 9.
    H. Yano et al., J. Low Temp. Phys. 138, 561 (2005) CrossRefADSGoogle Scholar
  10. 10.
    D.I. Bradley et al., Phys. Rev. Lett. 84, 1252 (2000) CrossRefADSGoogle Scholar
  11. 11.
    D.I. Bradley et al., Phys. Rev. Lett. 93, 235302 (2004) CrossRefADSGoogle Scholar
  12. 12.
    J. Jäger, B. Schruder, W. Schoepe, Phys. Rev. Lett. 74, 566 (1995) CrossRefADSGoogle Scholar
  13. 13.
    H.A. Nichol, L. Skrbek, P.C. Hendry, P.V.E. McClintock, Phys. Rev. Lett. 92, 244501 (2004) CrossRefADSGoogle Scholar
  14. 14.
    H.A. Nichol, L. Skrbek, P.C. Hendry, P.V.E. McClintock, Phys. Rev. E 70, 056307 (2004) CrossRefADSGoogle Scholar
  15. 15.
    D. Charalambous et al., Phys. Rev. E 74, 036307 (2006) CrossRefADSGoogle Scholar
  16. 16.
    R. Hanninen, M. Tsubota, W.F. Vinen, Phys. Rev. B 75, 064502 (2007) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M. Blažková
    • 1
  • M. Človečko
    • 2
  • E. Gažo
    • 2
  • L. Skrbek
    • 3
  • P. Skyba
    • 2
  1. 1.Institute of Physics ASCRPragueCzech Republic
  2. 2.Center of Low Temperature PhysicsInstitute of Experimental PhysicsKošiceSlovakia
  3. 3.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations