Journal of Low Temperature Physics

, Volume 148, Issue 1–2, pp 43–52 | Cite as

One- and Two-Electron Bubbles in Superfluid 4He

Article

Abstract

Properties of one- and two-electron bubbles in superfluid 4He at 0 K were studied by density functional theory. The model allows for accurate treatment of both the electronic and liquid degrees of freedom and as such, enables accurate calculation of bubble energetics for the ground and excited electronic states. The obtained results were compared against the earlier “bubble model” calculations and the limits and accuracy of the bubble model were established. The calculations were carried out in 3-D space and the non-spherical solvation structures for the 1P and 1D excited states were calculated. The 1P state was found to be stable within the radiative lifetime and no plausible non-radiative relaxation channels were found. Finally, a coupled boson and fermion density functional theory was used to show that two-electron bubbles are unstable in both the singlet and triplet electronic states.

Keywords

Solvated electron Superfluid helium 

PACS

67.40.Yv 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. Northby, T.M. Sanders Jr., Phys. Rev. Lett. 18, 1184 (1967) CrossRefADSGoogle Scholar
  2. 2.
    C.C. Grimes, G. Adams, Phys. Rev. B 41, 6366 (1990) CrossRefADSGoogle Scholar
  3. 3.
    C.C. Grimes, G. Adams, Phys. Rev. B 45, 2305 (1992) CrossRefADSGoogle Scholar
  4. 4.
    A.Y. Parshin, S.V. Pereverzev, JETP Lett. 52, 282 (1990) ADSGoogle Scholar
  5. 5.
    A.Y. Parshin, S.V. Pereverzev, JETP 74, 68 (1992) Google Scholar
  6. 6.
    A. Ghosh, H.J. Maris, Phys. Rev. B 72, 054512 (2005) CrossRefADSGoogle Scholar
  7. 7.
    J. Jortner, N.R. Kestner, S.A. Rice, M.H. Cohen, J. Chem. Phys. 43, 2614 (1965) CrossRefADSGoogle Scholar
  8. 8.
    W.B. Fowler, D.L. Dexter, Phys. Rev. 176, 176 (1968) CrossRefGoogle Scholar
  9. 9.
    F. Ancilotto, F. Toigo, Phys. Rev. B 50, 12820 (1994) CrossRefADSGoogle Scholar
  10. 10.
    H.J. Maris, J. Low Temp. Phys. 120, 173 (2000) CrossRefGoogle Scholar
  11. 11.
    J. Eloranta, V.A. Apkarian, J. Chem. Phys. 117, 10139 (2002) CrossRefADSGoogle Scholar
  12. 12.
    V. Grau, M. Barranco, R. Mayol, M. Pi, Phys. Rev. B 73, 064502 (2006) CrossRefADSGoogle Scholar
  13. 13.
    D.L. Dexter, W.B. Fowler, Phys. Rev. 183, 307 (1969) CrossRefADSGoogle Scholar
  14. 14.
    H.J. Maris, J. Low Temp. Phys. 132, 77 (2003) CrossRefGoogle Scholar
  15. 15.
    J. Dupont-Roc, M. Himbert, N. Pavloff, J. Treiner, J. Low Temp. Phys. 81, 31 (1990) CrossRefADSGoogle Scholar
  16. 16.
    F. Dalfovo, A. Lastri, L. Pricaupenko, S. Stringari, J. Treiner, Phys. Rev. B 52, 1193 (1995) CrossRefADSGoogle Scholar
  17. 17.
    N.G. Berloff, J. Low Temp. Phys. 116, 359 (1999) CrossRefGoogle Scholar
  18. 18.
    M. Guilleumas, F. Dalfovo, I. Oberosler, L. Pitaevskii, S. Stringari, J. Low Temp. Phys. 110, 449 (1998) CrossRefGoogle Scholar
  19. 19.
    F. Dalfovo, S. Stringari, J. Chem. Phys. 115, 10078 (2001) CrossRefADSGoogle Scholar
  20. 20.
    F. Dalfovo, R. Mayol, M. Pi, Phys. Rev. Lett. 85, 1028 (2000) CrossRefADSGoogle Scholar
  21. 21.
    J. Eloranta, N. Schwentner, V.A. Apkarian, J. Chem. Phys. 116, 4039 (2002) CrossRefADSGoogle Scholar
  22. 22.
    M. Barranco, R. Guardiola, S. Hernández, R. Mayol, J. Navarro, M. Pi, J. Low Temp. Phys. 142, 1 (2006) CrossRefADSGoogle Scholar
  23. 23.
    T. Isojärvi, L. Lehtovaara, J. Eloranta, AIP Conf. Proc. Low Temp. Phys. A, 386 (2006) Google Scholar
  24. 24.
    L. Lehtovaara, T. Kiljunen, J. Eloranta, J. Comput. Phys. 194, 78 (2004) MATHCrossRefADSGoogle Scholar
  25. 25.
    L. Lehtovaara, J. Eloranta, J. Low Temp. Phys. 138, 91 (2005) CrossRefADSGoogle Scholar
  26. 26.
    L. Lehtovaara, J. Eloranta, J. Comput. Phys. 221, 148 (2007) MATHCrossRefADSGoogle Scholar
  27. 27.
    J. Wilks, The Properties of Liquid and Solid Helium (Clarendon Press, Oxford, 1967) Google Scholar
  28. 28.
    OpenDX version 4.3.2, http://www.opendx.org
  29. 29.
    H.M. Guo, D.O. Edwards, R.E. Sarwinski, J.T. Tough, Phys. Rev. Lett. 27, 1259 (1971) CrossRefADSGoogle Scholar
  30. 30.
    J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981) CrossRefADSGoogle Scholar
  31. 31.
    W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1955) MathSciNetGoogle Scholar
  32. 32.
    A.K. Rajagopal, J. Callaway, Phys. Rev. B 7, 1912 (1973) CrossRefADSGoogle Scholar
  33. 33.
    S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980) ADSCrossRefGoogle Scholar
  34. 34.
    J.P. Perdew, A. Savin, K. Burke, Phys. Rev. A 51, 4531 (1995) CrossRefADSGoogle Scholar
  35. 35.
    S.L. Fiedler, J. Eloranta, Unpublished manuscript (2007) Google Scholar
  36. 36.
    H.J. Maris, A. Ghosh, D. Konstantinov, M. Hirsch, J. Low Temp. Phys. 134, 227 (2004) CrossRefADSGoogle Scholar
  37. 37.
    L. Lehtovaara, J. Eloranta, AIP Conf. Proc. Low Temp. Phys. A, 167 (2006) Google Scholar
  38. 38.
    J. Tempere, I.F. Silvera, J.T. Devreese, Phys. Rev. B 67, 035402 (2003) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of JyväskyläJyväskyläFinland
  2. 2.Department of Chemistry and BiochemistryCalifornia State University at NorthridgeNorthridgeUSA

Personalised recommendations