Journal of Low Temperature Physics

, Volume 147, Issue 3–4, pp 457–476 | Cite as

Symmetries of Pairing Correlations in Superconductor–Ferromagnet Nanostructures

  • M. Eschrig
  • T. Löfwander
  • T. Champel
  • J. C. Cuevas
  • J. Kopu
  • Gerd Schön
Article

Using selection rules imposed by the Pauli principle, we classify pairing correlations according to their symmetry properties with respect to spin, momentum, and energy. We observe that inhomogeneity always leads to mixing of even- and odd-energy pairing components. We investigate the superconducting pairing correlations present near interfaces between superconductors and ferromagnets, with focus on clean systems consisting of singlet superconductors and either weak or half-metallic ferromagnets. Spin-active scattering in the interface region induces all of the possible symmetry components. In particular, the long-range equal-spin pairing correlations have odd-frequency s-wave and even-frequency p-wave components of comparable magnitudes. We also analyze the Josephson current through a half-metal. We find analytic expressions and a universality in the temperature dependence of the critical current in the tunneling limit.

Pacs Numbers

74.45.+c 74.20.Rp 74.50.+r 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    von Löhneysen H. et al. (2005). Annalen d. Physik 14, 591CrossRefADSGoogle Scholar
  2. 2.
    D. Beckmann, H. B. Weber, and H. von Löhneysen, Phys. Rev. Lett. 93, 197003 (2004); D. Beckmann and H. von Löhneysen, cond-mat/0609766 (2006).Google Scholar
  3. 3.
    F. Pérez-Willard, J. C. Cuevas, C. Sürgers, P. Pfundstein, J. Kopu, M. Eschrig, and H. von Löhneysen, Phys. Rev. B 69, 140502 (2004).Google Scholar
  4. 4.
    Schöck M., Sürgers C., von Löhneysen H. (2000). Eur. Phys. J. B 14, 1ADSCrossRefGoogle Scholar
  5. 5.
    Strunk C., Sürgers C., Paschen U., von Löhneysen H. (1994). Phys. Rev. B 49: 4053CrossRefADSGoogle Scholar
  6. 6.
    T. Kontos et al., Phys. Rev. Lett. 86, 304 (2001); T. Kontos et al., Phys. Rev. Lett. 89, 137007 (2002).Google Scholar
  7. 7.
    V. V. Ryazanov et al., Phys. Rev. Lett. 86, 2427 (2001); V. V. Ryazanov et al., Phys. Rev. B 65, 020501(R) (2001).Google Scholar
  8. 8.
    Y. Blum, M. K. A. Tsukernik, and A. Palevski, Phys. Rev. Lett. 89, 187004 (2002); V. Shelukhin et al., Phys. Rev. B 73, 174506 (2006).Google Scholar
  9. 9.
    Sellier et al. H. (2004). Phys. Rev. Lett. 92, 257005CrossRefADSGoogle Scholar
  10. 10.
    Bauer et al. A. (2004). Phys. Rev. Lett. 92, 217001CrossRefADSGoogle Scholar
  11. 11.
    Guichard et al. W. (2003). Phys. Rev. Lett. 90, 167001CrossRefADSGoogle Scholar
  12. 12.
    M. D. Lawrence and N. Giordano, J. Phys.: Condens. Matter 8, 563 (1996); ibid 11, 1089 (1996).Google Scholar
  13. 13.
    M. Giroud et al., Phys. Rev. B 58, R11872 (1998); M. Giroud et al., Eur. Phys. J. B 31, 103 (2003).Google Scholar
  14. 14.
    Petrashov et al. V.T. (1999). Phys. Rev. Lett. 83: 3281CrossRefADSGoogle Scholar
  15. 15.
    Keizer et al. R.S. (2006). Nature 439: 825CrossRefADSGoogle Scholar
  16. 16.
    Aumentado J., Chandrasekhar V. (2001). Phys. Rev. B 64, 054505CrossRefADSGoogle Scholar
  17. 17.
    Gu et al. J.Y. (2002). Phys. Rev. Lett. 89, 267001CrossRefADSGoogle Scholar
  18. 18.
    Geers et al. J.M.E. (2001). Phys. Rev. B 64, 094506CrossRefADSGoogle Scholar
  19. 19.
    Frolov et al. S.M. (2004). Phys. Rev. B 70, 144505CrossRefADSGoogle Scholar
  20. 20.
    Stamopoulos D., Pissas M. (2006). Phys. Rev. B 73, 132502CrossRefADSGoogle Scholar
  21. 21.
    L. N. Bulaevskii, V. V. Kuzii, and A. A. Sobyanin, Pis’ma Zh. Eksp. Teor. Fiz. 25, 314 (1977) [JETP Lett. 25, 290 (1077)].Google Scholar
  22. 22.
    A. I. Buzdin, L. N. Bulaevskii, and S. V. Panyukov, Pis’ma Zh. Eksp. Teor. Fiz. 35, 147 (1982) [JETP Lett. 35, 178 (1982)].Google Scholar
  23. 23.
    Bulaevskii et al. L.N. (1985). Adv. Phys. 34, 175CrossRefADSGoogle Scholar
  24. 24.
    Radovic et al. Z. (1991). Phys. Rev. B 44, 759CrossRefADSGoogle Scholar
  25. 25.
    P. G. de Gennes, Rev. Mod. Phys. 36, 225 (1964); V. G. Kogan, Phys. Rev. B 26, 88 (1982).Google Scholar
  26. 26.
    Zareyan M., Belzig W., Nazarov Yu.V. (2001). Phys. Rev. Lett. 86, 308CrossRefADSGoogle Scholar
  27. 27.
    Halterman K., Valls O.T. (2002). Phys. Rev. B 65, 14509CrossRefADSGoogle Scholar
  28. 28.
    Yokoyama T., Tanaka Y., Golubov A.A. (2006). Phys. Rev. B 73, 094501CrossRefADSGoogle Scholar
  29. 29.
    Konstandin A., Kopu J., Eschrig M. (2005). Phys. Rev. B 72, 140501(R)CrossRefADSGoogle Scholar
  30. 30.
    Golubov A.A., Kupriyanov M.Yu., Il’ichev E. (2004). Rev. Mod. Phys. 76, 411CrossRefADSGoogle Scholar
  31. 31.
    Bergeret F.S., Volkov A.F., Efetov K.B. (2001). Phys. Rev. Lett. 86: 4096CrossRefADSGoogle Scholar
  32. 32.
    Bergeret F.S., Volkov A.F., Efetov K.B. (2005). Rev. Mod. Phys. 77: 1321CrossRefADSGoogle Scholar
  33. 33.
    Kadigrobov A., Shekhter R.I., Jonson M. (2001). Europhys. Lett. 54, 394CrossRefADSGoogle Scholar
  34. 34.
    M. Eschrig et al., Phys. Rev. Lett. 90, 137003 (2003); J. Kopu et al., Phys. Rev. B 69, 094501 (2004). M. Eschrig et al., in Adv. in Sol. State Phys. B. Kramer, ed., Springer Verlag Heidelberg (2004), vol. 44, pp. 533–546.Google Scholar
  35. 35.
    T. Löfwander et al., Phys. Rev. Lett. 95, 187003 (2005); T. Löfwander, T. Champel, and M. Eschrig, cond-mat/0605172 (2006).Google Scholar
  36. 36.
    T. Champel and M. Eschrig, Phys. Rev. B 71, 220506(R) (2005); ibid. 72, 054523 (2005).Google Scholar
  37. 37.
    Heikkilä T.T., Wilhelm F.K., Schön G. (2000). Europhys. Lett. 51, 434CrossRefADSGoogle Scholar
  38. 38.
    Fominov Y.V., Golubov A.A., Kupriyanov M.Y. (2003). JETP Lett. 77, 510CrossRefADSGoogle Scholar
  39. 39.
    Buzdin A.I. (2005). Rev. Mod. Phys. 77, 935CrossRefADSGoogle Scholar
  40. 40.
    V. Braude and Yu. V. Nazarov, cond-mat/0610037.Google Scholar
  41. 41.
    Y. Asano, Y. Tanaka, and A. A. Golubov, cond-mat/0609566.Google Scholar
  42. 42.
    Tokuyasu T., Sauls J.A., Rainer D. (1988). Phys. Rev. B 38: 8823CrossRefADSGoogle Scholar
  43. 43.
    Fogelström M. (2000). Phys. Rev. B 62, 11812CrossRefADSGoogle Scholar
  44. 44.
    Barash Yu.S., Bobkova I.V. (2002). Phys. Rev. B 65, 144502CrossRefADSGoogle Scholar
  45. 45.
    Zhao E., Löfwander T., Sauls J.A. (2004). Phys. Rev. B 70, 134510CrossRefADSGoogle Scholar
  46. 46.
    Cottet A., Belzig W. (2005). Phys. Rev. B 72, 180503(R)CrossRefADSGoogle Scholar
  47. 47.
    Eschrig M., T. Löfwander, to be published.Google Scholar
  48. 48.
    Eilenberger G. (1968). Z. Phys. 214, 195CrossRefADSGoogle Scholar
  49. 49.
    Larkin A.I., Ovchinnikov Y.N. (1969). Sov. Phys. JETP 28: 1200ADSGoogle Scholar
  50. 50.
    See for example J. W. Serene and D. Rainer, Phys. Rep. 101, 221 (1983).Google Scholar
  51. 51.
    V. L. Berezinskii, Pis’ma Zh. Eksp. Teor. Fiz. 20, 628 (1974) [JETP Lett. 20, 287 (1974)].Google Scholar
  52. 52.
    Balatsky A., Abrahams E. (1992). Phys. Rev. B 45, 13125CrossRefADSGoogle Scholar
  53. 53.
    Abrahams et al. E. (1995). Phys. Rev. B 52: 1271CrossRefADSGoogle Scholar
  54. 54.
    Coleman P., Miranda E., Tsvelik A. (1993). Phys. Rev. Lett. 70: 2960CrossRefADSGoogle Scholar
  55. 55.
    Fuseya Y., Kohno H., Miyake K. (2003). J. Phys. Soc. Jap. 72: 2914MATHCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M. Eschrig
    • 1
  • T. Löfwander
    • 1
  • T. Champel
    • 1
    • 3
  • J. C. Cuevas
    • 1
    • 2
    • 4
  • J. Kopu
    • 1
  • Gerd Schön
    • 1
    • 2
  1. 1.Institut für Theoretische Festkörperphysik and DFG-Center for Functional NanostructuresUniversität KarlsruheKarlsruheGermany
  2. 2.Forschungszentrum KarlsruheInstitut für NanotechnologieKarlsruheGermany
  3. 3.Laboratoire de Physique et Modélisation des Milieux CondensésC.N.R.S.Grenoble CedexFrance
  4. 4.Departamento de Física Teórica de la Materia Condensada C-V, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain

Personalised recommendations