Journal of Low Temperature Physics

, Volume 147, Issue 3–4, pp 165–177 | Cite as

Fermi Liquid Near a Quantum Critical Point


We investigate the approach to the quantum critical point of a Pomeranchuk instability from the symmetric, disordered side of the phase diagram. In the low-temperature limit, a Fermi liquid description of the metal is possible and becomes exact for T → 0. We discuss in detail which features of the approach to quantum criticality can be captured within Fermi liquid theory and which are outside of its scope.

PACS Numbers:

71.10.Ay 71.10.Hf 71.10.Pm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. H. von Löhneysen, T. Pietrus, G. Portisch, H. G. Schlager, A. Schröder, M. Sieck, and T. Trappmann, Phys. Rev. Lett. 72, 3262 (1994); H. von Löhneysen, J. Phys. Cond. Mat. 8, 9689 (1996); O. Stockert, H. von Löhneysen, A. Rosch, N. Pyka, and M. Loewenhaupt, Phys. Rev. Lett. 80 , 5627 (1998).Google Scholar
  2. G. R. Stewart, Rev. Mod. Phys. 73, 797 (2001).Google Scholar
  3. H. von Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, cond-mat/0606317, submitted to Rev. Mod. Phys.Google Scholar
  4. Pomeranchuk I. (1958) . Sov. Phys. JETP 8: 361MATHGoogle Scholar
  5. V. Oganesyan, S. A. Kivelson, and E. Fradkin, Phys. Rev. B 64, 195109 (2001).Google Scholar
  6. W. Metzner, D. Rohe, and S. Andergassen, Phys. Rev. Lett. 91, 066402 (2003); L. Dell’Anna and W. Metzner, Phys. Rev. B 73, 045127 (2006).Google Scholar
  7. Hankevych V., Wegner F. (2003) . Eur. Phys. J. B 31: 333CrossRefADSGoogle Scholar
  8. A. V. Chubukov, C. Pepin, and J. Rech, Phys. Rev. Lett. 92, 147003 (2004), J. Rech, C. Pepin, and A. V. Chubukov, preprint cond-mat/0605306.Google Scholar
  9. Lawler M.J., Fernandez V., Barci D.G., Fradkin E., Oxman L. (2006) . Phys. Rev. B 73: 085101CrossRefADSGoogle Scholar
  10. Nilsson J., Castro Neto A.H. (2005) . Phys. Rev. B 72: 195104CrossRefADSGoogle Scholar
  11. Quintanilla J., Schofield A.J. (2006) . Phys. Rev. B 74: 115126CrossRefADSGoogle Scholar
  12. S. A. Grigera, P. Gegenwart, R. A. Borzi, F. Weickert, A. Schofield, R. S. Perry, T. Tayama, T. Sakakibara, Y. Maeno, G. Green, and A. P. Mackenzie, Science 306, 1154 (2004); Hae-Young Kee and Yong Baek Kim, Phys. Rev. B 71, 184402 (2005); C. Honerkamp, Phys. Rev. B 72, 115103 (2005).Google Scholar
  13. Kivelson S.A., Bindloss I.P., Fradkin E., Oganesyan V., Tranquada J.M., Kapitulnik A., Howald C. (2003) . Rev. Mod. Phys. 75: 1201CrossRefADSGoogle Scholar
  14. M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 82, 394 (1999); R. Moessner and J. T. Chalker, Phys. Rev. B 54, 5006 (1996).Google Scholar
  15. L. D. Landau, Sov. Phys. JETP 3, 920 (1957); ibid. 5, 101 (1957), ibid. 8, 70 (1959); G. Baym and Pethik, Landau Fermi-Liquid Theory. Concepts and Applications, Wiley-VCH, Berlin (1991).Google Scholar
  16. Hertz J.A. (1976) . Phys. Rev. B 14: 1165CrossRefADSGoogle Scholar
  17. M. Garst, P. Wölfle, and A. Rosch, unpublished.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institut für Theorie der Kondensierten MaterieUniversität KarlsruheKarlsruheGermany
  2. 2.Institut für Theoretische PhysikUniversität zu KölnKölnGermany

Personalised recommendations