Journal of Low Temperature Physics

, Volume 147, Issue 1–2, pp 49–57 | Cite as

Effect of Killer Impurities on Optical Properties of ZnO at Low Temperature

Article

Optical characterizations for ZnO doped with killer impurities (Co or Fe or Ni) having doping concentrations 0.05–1.00% by weight have been carried out at 77 K. Optical properties such as excited state lifetime, trap-depth and decay constant values have been measured using the pulse excitation method. The effect of killer dopants, concentration of killer ions as well as the effect of temperature on various optical parameters values has been observed. Multi-exponential decay curves have been observed. Lifetime values are found to be in the micro- and nano-second time domain and a reverse trend is obtained with increase in concentration of killer impurities. With decreases in temperature from 300 to 77 K, lifetime shortening takes place. The effect of killer impurities is more prominent at higher concentrations. A mixed trend in decay constant values is observed with the increase proportional to the concentration of killer impurities. The values of the decay constant show a mixed effect with change in impurity concentrations. The value of the decay constant 0.76, corresponding to ZnO: Ni (0.7%) is the highest among all the doped ZnO phosphors.

Keywords

lifetime values ZnO 77 K 

PACS Numbers

78-55.m 78.55.Ap 78.66.Db 78.66.Hf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wegh R.T., Donker H., Van Loef E.V.D., Oskam K.D., Meijerink A. (2000). J. Lumin. 87: 1017CrossRefGoogle Scholar
  2. 2.
    Salley G.M., Wenger O.S., Kramer K.W., Gudel H.U. (2002). Curr. Opin. Solid State Mater. Sci. 6: 487CrossRefGoogle Scholar
  3. 3.
    Ronda C.R. (1997). J. Lumin. 72: 49CrossRefGoogle Scholar
  4. 4.
    Bagnall D.M., Chen Y.F., Zhu Z., Yao T., Koyama S., Sen M.Y., Goto T. (1997). Appl. Phys. Lett. 70: 2230CrossRefADSGoogle Scholar
  5. 5.
    Reynolds D.C., Look D.C., Jogai B. (1996). Solid State Commun. 99:873CrossRefGoogle Scholar
  6. 6.
    Ohta H., Kawamura K., Orita M., Hirano M., Sarukura N., Hosono H. (2000). Appl. Phys. Lett. 77: 475CrossRefADSGoogle Scholar
  7. 7.
    Ronfard-Haret J.C. (2003). J. Lumin. 104: 103CrossRefGoogle Scholar
  8. 8.
    Ueda K., Tabat H., Kawai T. (2001). Appl. Phys. Lett. 79: 988CrossRefADSGoogle Scholar
  9. 9.
    Sato K., Yoshida H.K. (2002). Semicond. Sci. Technol. 17: 376CrossRefGoogle Scholar
  10. 10.
    Boemare C., Monteiro T., Guilherme J.G., Alves E. (2001). Physica B 308: 985CrossRefADSGoogle Scholar
  11. 11.
    Moncorge R., Bettinelli M., Guyot Y., Capobianco J.A., Girard S. (1999). J. Phys.: Condens. Matter 11: 6831CrossRefADSGoogle Scholar
  12. 12.
    Walker G., Kamaluddin B., Glynn T.J., Sherlock R. (1994). J. Lumin. 60: 123CrossRefGoogle Scholar
  13. 13.
    White W.B., Matsumura M., Linnehan D.G., Furukawa T., Chandrasekhar B.K. (1986). Am. Mineral. 71: 1415Google Scholar
  14. 14.
    Pressel K., Thonke K., Dornen A., Pensl G. (1991). Phys. Rev. B 43: 2239CrossRefADSGoogle Scholar
  15. 15.
    Troccoli M., Scamarico G., Fraboni B., Priolo F., Gasparotto A. (2000). Semicond. Sci. Technol. 16: L1CrossRefGoogle Scholar
  16. 16.
    Bhatti H.S., Sharma R., Verma N.K., Vadera S.R., Manzoor K. (2006). J. Phys. D: Appl. Phys. 39: 1754CrossRefADSGoogle Scholar
  17. 17.
    Bhatti H.S., Gupta A., Verma N.K., Kumar S. (2006). J. Mater. Sci.: Mater. Electron. 17: 281CrossRefGoogle Scholar
  18. 18.
    Reynolds D.C., Look D.C., Jogai B., Hoelscher J.E., Sherriff R.E., Harris M.T., Callahan M.J. (2000). J. Appl. Phys. 88: 2152CrossRefADSGoogle Scholar
  19. 19.
    Teke A., Ozgur U., Dogan S., Gu X., Morkoç H., Nemeth B., Nause J., Everitt H.O. (2004). Phys. Rev. B 70: 195207CrossRefADSGoogle Scholar
  20. 20.
    Koida T., Chichibu S.F., Uedono A., Tsukazaki A., Kawasaki M., Sota T., Segawa Y., Koinuma H. (2003). Appl. Phys. Lett. 82: 532CrossRefADSGoogle Scholar
  21. 21.
    Kobayashi A., Sankey O.F., Dow J.D. (1983). Phys. Rev. B 28: 946CrossRefADSGoogle Scholar
  22. 22.
    Jung S.W., Park W.I., Cheong H.D., Yi G.C., Jang H.M., Hong S., Joo T. (2002). Appl. Phys. Lett. 80: 1924CrossRefADSGoogle Scholar
  23. 23.
    Sapra S., Shanthi N., Sarma D.D. (2002). Phys. Rev. B, 66: 205202CrossRefADSGoogle Scholar
  24. 24.
    Chen W., Sammynaiken R., Huamg Y., Malam J.O., Wallenberg R., Bovin J.O., Zwiller V., Kotov N.A. (2001). J. Appl. Phys 89: 1120CrossRefADSGoogle Scholar
  25. 25.
    Bhatti H.S., Sharma R., Verma N.K. (2006). Physica B 382:38CrossRefADSGoogle Scholar
  26. 26.
    Bhatti H.S., Sharma R., Verma N.K. (2006). J. Mod. Optics 53: 2021CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysicsPunjabi UniversityPatialaIndia
  2. 2.SPMSThapar Institute of Engineering & TechnologyPatialaIndia

Personalised recommendations