Journal of Low Temperature Physics

, Volume 146, Issue 5–6, pp 537–562

Quartz Tuning Fork: Thermometer, Pressure- and Viscometer for Helium Liquids

  • R. Blaauwgeers
  • M. Blazkova
  • M. Človečko
  • V. B. Eltsov
  • R. de Graaf
  • J. Hosio
  • M. Krusius
  • D. Schmoranzer
  • W. Schoepe
  • L. Skrbek
  • P. Skyba
  • R. E. Solntsev
  • D. E. Zmeev
Article

Commercial quartz oscillators of the tuning-fork type with a resonant frequency of ∼ 32 kHz have been investigated in helium liquids. The oscillators are found to have at best Q values in the range 105–106, when measured in vacuum below 1.5 K. However, the variability is large and for very low temperature operation the sensor has to be preselected. We explore their properties in the regime of linear viscous hydrodynamic response in normal and superfluid 3He and 4He, by comparing measurements to the hydrodynamic model of the sensor.

PACS Numbers

47.80.+v 67.90.+z 85.50.−n. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eernisse E.P., Ward R.W., and Wiggins R.B., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 323 (1988) – a survey of quartz resonator sensor technologies.Google Scholar
  2. 2.
    D. O. Clubb, O. V. L. Buu, R. M. Bowley, R. Nyman, and J. R. Owers-Bradley, J. Low Temp. Phys. 136, 1 (2004).CrossRefADSGoogle Scholar
  3. 3.
    Rychen J., Ihn T., Studerus P., Herrmann A., Ensslin K., Hug H.J., van Schendel P.J.A., Güntherodt H. (2000). J., Rev. Sci. Instr. 71: 1695CrossRefADSGoogle Scholar
  4. 4.
    M. Niemetz, H. Kerscher, and W. Schoepe, J. Low Temp. Phys. 126, 287 (2002). [W. Schoepe, Phys. Rev. Lett. 92, 095301 (2004)]–electrically driven magnetically levitated oscillating sphere in 4He-II.Google Scholar
  5. 5.
    H. A. Nichol, L. Skrbek, P. C. Hendry, and P. V. E. McClintock, Phys. Rev. Lett. 92, 244501 (2004). [Phys. Rev. E 70, 056307 (2004)]–electrically driven oscillating grid in 4He-II.Google Scholar
  6. 6.
    Yano H., Handa A., Nakagawa H., Obara K., Ishikawa O., Hata T., Nakagawa M., J. Low Temp. Phys. 138, 561 (2005)–vibrating wire resonator in 4He-II.Google Scholar
  7. 7.
    D. I. Bradley, D. O. Clubb, S. N. Fisher, A. M. Guénault, R. P. Haley, C. J. Matthews, G. R. Pickett, V. Tsepelin, and K. Zaki, Phys. Rev. Lett. 95, 035302 (2005). [ibid. 96, 035301 (2006)].Google Scholar
  8. 8.
    Bradley D.I., (2000). Phys. Rev. Lett. 84: 1252CrossRefADSGoogle Scholar
  9. 9.
    J. Martikainen, J. Tuoriniemi, T. Knuuttila, and G. Pickett, J. Low Temp. Phys. 126, 139 (2002)–vibrating wire resonator in 3He – 4He solution.Google Scholar
  10. 10.
    K. Karrai and R. D. Grober, Tip-sample distance control for near-field scanning optical microscopes, in Near-Field Optics, M. A. Paesler and P. T. Moyer (ed.), Proc. SPIE 2535, 69 (1995).Google Scholar
  11. 11.
    K. Karrai, lecture notes (2000) at http://www.nano.physik.uni-muenchen.de/publikationen/Preprints/p-00-03_Karrai.pdfGoogle Scholar
  12. 12.
    Landau L.D., Lifshitz E.M., (1987). Fluid Mechanics. Pergamon Press, Oxford, UKMATHGoogle Scholar
  13. 13.
    L. M. Milne-Thomson, Theoretical hydrodynamics, Dover Publications, New York (1996); H. Lamb, Hydrodynamics, Dover Publications, New York (1945).Google Scholar
  14. 14.
    Sader J.E., (1998). J. Appl. Phys. 84, 64CrossRefADSGoogle Scholar
  15. 15.
    Martinez E.N., Esquinazi P., Luzuriaga J., (1990). Am. J. Phys. 58: 1163CrossRefADSGoogle Scholar
  16. 16.
    Morishita M., Kuroda T., Sawada A., Satoh T., (1989). J. Low Temp. Phys. 76, 387CrossRefADSGoogle Scholar
  17. 17.
    Winkelmann C.B., Collin E., Yu. Bunkov M., Godfrin H., (2004). J. Low Temp. Phys. 135, 3CrossRefADSGoogle Scholar
  18. 18.
    Jäger J., Schuderer B., Schoepe W., (1995). Physica B 210, 201CrossRefADSGoogle Scholar
  19. 19.
    V. D. Arp and R. C. McCarty, The Properties of Critical Helium Gas Technical Report, University Oregon (1998); R. D. McCarty, Thermophysical Properties of Helium-4 from 2 to 1500 K with Pressures to 1000 atm, Technical Note 631, National Bureau of Standards, Gaithersburg, Maryland (1972).Google Scholar
  20. 20.
    Frank Pobell, (1996). Matter and Methods at Low Temperatures. Springer, Berlin, 2nd edGoogle Scholar
  21. 21.
    Skyba P., Nyéki J., Gažo E., Makroczyová V., Bunkov Yu.M., Sergackov D.A., Feher A., (1997). Cryogenics 37, 293CrossRefGoogle Scholar
  22. 22.
    König R., Esquinazi P., Pobell F., (1993). J. Low Temp. Phys. 90, 55CrossRefADSGoogle Scholar
  23. 23.
    The fork used in the measurements at 29 bar pressure was manufactured in Japan and was obtained from RS Company under stock number 472-1161, brand Fox Electronics and manufacturer’s part number NC26. The fork used in the zero pressure measurements was manufactured in Taiwan and was obtained from RS Company under stock number 226–1437, brand C-MAC Frequency Products and manufacturer’s part number A103C.Google Scholar
  24. 24.
    A. I. Ahonen, M. Krusius, and M. A. Paalanen, J. Low Temp. Phys. 25, 421 (1976); P. J. Hakonen, M. Krusius, M. M. Salomaa, R. H. Salmelin, J. T. Simola, A. D. Gongadze, G. E. Vachnadze, and G. A. Kharadze, J. Low Temp. Phys. 76, 225 (1989).Google Scholar
  25. 25.
    Carless D.C., Hall H.E., Hook J.R., (1983). J. Low Temp. Phys. 50, 583CrossRefADSGoogle Scholar
  26. 26.
    Dobbs E.R., (2000). Helium Three. Oxford University Press, Oxford, UKGoogle Scholar
  27. 27.
    Roach P.R., Eckstein Y., Meisel M.W., Aniola-Jedrzejek L., (1983). J. Low Temp. Phys. 52, 433CrossRefADSGoogle Scholar
  28. 28.
    In setup 1 the same type of fork was used as in 3He measurements at 29 bar pressure.23 In setup 2 the fork was made in China by Fronter Electronics, product number DT26.Google Scholar
  29. 29.
    Donnelly R.J., Barenghi C.F., (1998). J. Phys. Chem. Ref. Data 27: 1217ADSCrossRefGoogle Scholar
  30. 30.
    Donnelly R.J., (1991). Quantized vortices in Helium II. Cambridge University Press, CambridgeGoogle Scholar
  31. 31.
    Vinen W.F., Skrbek L., Nichol H.A., (2004). J. Low Temp. Phys. 135, 423CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • R. Blaauwgeers
    • 1
  • M. Blazkova
    • 2
  • M. Človečko
    • 3
  • V. B. Eltsov
    • 1
    • 4
  • R. de Graaf
    • 1
  • J. Hosio
    • 1
  • M. Krusius
    • 1
  • D. Schmoranzer
    • 5
  • W. Schoepe
    • 6
  • L. Skrbek
    • 2
    • 5
  • P. Skyba
    • 3
  • R. E. Solntsev
    • 1
  • D. E. Zmeev
    • 1
    • 4
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyEspooFinland
  2. 2.Institute of Physics ASCRPragueCzech Republic
  3. 3.Centre of Low Temperature PhysicsInstitute of Experimental Physics SAVKošiceSlovakia
  4. 4.Kapitza Institute for Physical ProblemsMoscowRussia
  5. 5.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  6. 6.Fakultät für PhysikUniversität RegensburgRegensburgGermany

Personalised recommendations