Journal of Low Temperature Physics

, Volume 146, Issue 3–4, pp 417–434 | Cite as

Influence of Normal Fluid Disturbances on Interactions of Solid Particles with Quantized Vortices

  • Y. A. Sergeev
  • S. Wang
  • E. Meneguz
  • C. F. Barenghi
Article

Two-dimensional Lagrangian trajectories of the inertial particle in helium II are analyzed in the vicinity of the triple-vortex structure, i.e. the superfluid vortex and the normal dipole-like vortex structure induced by the mutual friction. It is shown that the vortices in the normal fluid can deflect the particle which otherwise would have collided with the superfluid vortex and, provided that the relative velocity of the particle and the vortex is not too large, would have been trapped by it. A geometrical impact parameter, which in the considered two-dimensional model, plays a rôle of the cross-section of particle–vortex collision, is determined and calculated as a function of temperature, externally applied superfluid velocity, and the Stokes number defined by the size of the local vortex structure, superfluid line velocity, and particle viscous response time.

PACS Numbers

67.40.Vs Quantum fluids: vortices and turbulence 47.80.+v Fluid mechanics: instrumentation for fluid mechanics 47.27.-i Fluid mechanics: turbulent flows 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Donnelly, A. N. Karpetis, J. J. Niemela, K. R. Sreenivasan, W. F. Vinen, and C. M. White, J. Low Temp. Phys. 126, 327 (2002); T. Zhang, D. Celik, and S. W. Van Sciver, J. Low Temp. Phys. , 985 (2004); T. Zhang and S. W. Van Sciver, Nat. Phys. , 36 (2005); G. P. Bewley, D. P. Lathrop, and K. R. Sreenivasan, Nature 44, 588 (2006).Google Scholar
  2. 2.
    Zhang T., Van Sciver S.W., (2005). J. Low Temp. Phys. 138, 865CrossRefADSGoogle Scholar
  3. 3.
    Berloff N.G., Roberts P.H., (2000). Phys. Rev. B 63: 024510CrossRefADSGoogle Scholar
  4. 4.
    Poole D.R., Barenghi C.F., Sergeev Y.A., Vinen W.F., (2005). Phys. Rev. B 71: 064514CrossRefADSGoogle Scholar
  5. 5.
    Hall H.E. and Vinen W.F., Proc. Roy. Soc. London Ser. A 238, 215 (1956); W. F. Vinen, Proc. Roy. Soc. London Ser. A 242, 493 (1957).Google Scholar
  6. 6.
    Idowu O.C., Willis A., Barenghi C.F., Samuels D.C., (2000). Phys. Rev. B 62: 3409CrossRefADSGoogle Scholar
  7. 7.
    Kivotides D., Barenghi C.F., Samuels D.C., (2000). Science 290(5492): 777CrossRefADSGoogle Scholar
  8. 8.
    K. W. Schwarz, Phys. Rev. Lett. 49, 283 (1982); Phys. Rev. B 38, 2398 (1988).Google Scholar
  9. 9.
    Aarts R.G.K., De Waele A.T.A.M., (1994). Phys. Rev. B 50: 10069CrossRefADSGoogle Scholar
  10. 10.
    Samuels D.C., (1993). Phys. Rev. B 47: 1107CrossRefADSGoogle Scholar
  11. 11.
    Barenghi C.F., Samuels D.C., Bauer G.H., Donnelly R.J., (1997). Phys. Fluids 9: 2361CrossRefGoogle Scholar
  12. 12.
    Kivotides D., Barenghi C.F., Sergeev Y.A., (2005). Phys. Rev. Lett. 95: 215302CrossRefADSGoogle Scholar
  13. 13.
    The data of this table, used in preparation Dr. Idowu’s Ph.D. Thesis (University of Newcastle, 2000) and work [6] for publication, have been supplied by Dr. O. C. Idowu.Google Scholar
  14. 14.
    Idowu O.C., Kivotides D., Barenghi C.F., Samuels D.C., (2000). J. Low Temp. Phys. 120, 269CrossRefGoogle Scholar
  15. 15.
    Donnelly R.J., Barenghi C.F., (1998). J. Phys. Chem. Ref. Data 27: 1217ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Y. A. Sergeev
    • 1
  • S. Wang
    • 1
  • E. Meneguz
    • 2
    • 3
  • C. F. Barenghi
    • 4
  1. 1.School of Mechanical and Systems EngineeringNewcastle UniversityNewcastle upon TyneUK
  2. 2.Facoltà di IngegneriaUniversità degli Studi di UdineUdineItaly
  3. 3.Dipartimento di Energetica e MacchineUniversità degli Studi di UdineUdineItaly
  4. 4.School of MathematicsNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations