Journal of Low Temperature Physics

, Volume 146, Issue 1–2, pp 213–226 | Cite as

Influence of Temperature Gradients on Tunnel Junction Thermometry below 1 K: Cooling and Electron–Phonon Coupling

  • J. T. Karvonen
  • L. J. Taskinen
  • I. J. Maasilta
Lammi Workshop on Quantum Phenomena at Low Temperatures

We have studied thermal gradients in thin Cu and AlMn wires, both experimentally and theoretically. In the experiments, the wires were Joule heated non-uniformly at sub-Kelvin temperatures, and the resulting temperature gradients were measured using normal metal-insulator-superconducting tunnel junctions. The data clearly shows that even in reasonably well-conducting thin wires with a short (~10 μm) non-heated portion, significant temperature differences can form. In most cases, the measurements agree well with a model which includes electron–phonon interaction and electronic thermal conductivity by the Wiedemann–Franz law.

Pacs Numbers

73.23.-b 72.10.Di 74.50.+r 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gantmakher V.F. (1974). Rep. Prog. Phys. 37, 317CrossRefADSGoogle Scholar
  2. 2.
    Roukes M.L., Freeman M.R., Germain R.S., Richardson R.C., Ketchen M.B. (1985). Phys. Rev. Lett. 55, 422CrossRefADSGoogle Scholar
  3. 3.
    Rowell J.M., Tsui D.C. (1976). Phys. Rev. B 14:2456CrossRefADSGoogle Scholar
  4. 4.
    Giazotto F., Heikkilä T.T., Luukanen A., Savin A.M., Pekola J.P. (2006). Rev. Mod. Phys. 78, 217CrossRefADSGoogle Scholar
  5. 5.
    Schmidt D.R., Schoelkopf R.J., Cleland A.N. (2004). Phys. Rev. Lett. 93:045901CrossRefADSGoogle Scholar
  6. 6.
    M. Meschke, W. Guichard, and J. P. Pekola, cond-mat/0605678.Google Scholar
  7. 7.
    Schmid A. (1973). Z. Phys. 259, 421CrossRefGoogle Scholar
  8. 8.
    M. Yu. Reizer and A. V. Sergeev, Zh. Eksp. Teor. Fiz. 90, 1056 (1986) [ Sov. Phys. JETP 63, 616 (1986)].Google Scholar
  9. 9.
    Sergeev A., Mitin V. (2000). Phys. Rev. B 61:6041CrossRefADSGoogle Scholar
  10. 10.
    Reizer M.Yu. (1989). Phys. Rev. B 40:5411CrossRefADSGoogle Scholar
  11. 11.
    Wellstood F.C., Urbina C., Clarke J. (1994). Phys. Rev. B 49:5942CrossRefADSGoogle Scholar
  12. 12.
    Berman R. (1976) Thermal Conduction in Solids. Clarendon Press, OxfordGoogle Scholar
  13. 13.
    Steinbach A.H., Martinis J.M., Devoret M.H. (1996). Phys. Rev. Lett. 76:3806CrossRefADSGoogle Scholar
  14. 14.
    Clark A.M., Miller N.A., Williams A., Ruggiero S.T., Hilton G.C., Vale L.R., Beall J.A., Irwin K.D., Ullom J.N. (2005). Appl. Phys. Lett. 86:173508CrossRefADSGoogle Scholar
  15. 15.
    Luukanen A., Leivo M.M., Suoknuuti J.K., Manninen A.J., Pekola J.P. (2000). J. Low Temp. Phys. 120, 281CrossRefGoogle Scholar
  16. 16.
    Miller N.A., Clark A.M., Williams A., Ruggiero S.T., Hilton G.C., Beall J.A., Irwin K.D., Vale L.R., Ullom J.N. (2005). IEEE Trans. Appl. Supercond. 15, 556CrossRefGoogle Scholar
  17. 17.
    Karvonen J.T., Taskinen L.J., Maasilta I.J. (2005). Phys. Rev. B 72:012302CrossRefADSGoogle Scholar
  18. 18.
    L.J. Taskinen and I.J. Maasilta, Appl. Phys. Lett. (to be published), cond-mat/0604514.Google Scholar
  19. 19.
    Karvonen J.T., Taskinen L.J., Maasilta I.J. (2004). Phys. Stat. Solidi C, 1:2799CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • J. T. Karvonen
    • 1
  • L. J. Taskinen
    • 1
  • I. J. Maasilta
    • 1
  1. 1.Department of Physics, Nanoscience CenterUniversity of JyväskyläJyväskyläFinland

Personalised recommendations